Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.
Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.
Gerne kannst Du natürlich weiterarbeiten
im neuen Projektwiki (projekte.zum.de).Grenzwerte im Unendlichen: Unterschied zwischen den Versionen
Zeile 80: | Zeile 80: | ||
Welchen Zusammenhang kannst du zwischen '''a''', '''b''' und der '''<span style="color: orange">waagrechten Asymptote</span>''' von <span style="color: blue">'''f'''</span> feststellen?<br /> | Welchen Zusammenhang kannst du zwischen '''a''', '''b''' und der '''<span style="color: orange">waagrechten Asymptote</span>''' von <span style="color: blue">'''f'''</span> feststellen?<br /> | ||
− | Betrachte auch hier das Verhalten der Funktion für x gegen + oder - | + | Betrachte auch hier das Verhalten der Funktion für x gegen + oder - <math>infty</math>, indem du die GeoGebra-Werkzeugleiste benutzt.</big> |
<ggb_applet width="773" height="571" version="4.2" ggbBase64="UEsDBBQACAAIAFqS70IAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACABaku9CAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbL1YbW/bNhD+nP6Kgz61a2KTendgt2gLDOuQdsXSDd2+DJRE22xkSRMpWy7643ckJVt2XtokQ9HYJ1L3/twd6U5ftqsc1ryWoixmDh0RB3iRlpkoFjOnUfOz2Hn54sl0wcsFT2oG87JeMTVz/JHr7OVwNfJCLSyymROFLE5Txs7mcZKd+SSjZ4kbTs7cLKVeyAKSJZED0EpxXpTv2YrLiqX8Ml3yFbsoU6aMzqVS1fl4vNlsRr31UVkvxotFMmpl5gB6XsiZ0z2co7oDoY1n2F1C6PjTuwur/kwUUrEi5Q7oqBrx4snJdCOKrNzARmRqOXNigmEsuVgsMczQCxwYa6YKY614qsSaSxQdLE3MalU5ho0V+v2JfYJ8F44DmViLjNczh4zoxEW9ZS14obr3tLMz7jVM14JvrCr9ZKz4ZIKZWwspkpzPnDnLJUYiinmNWUQn6gaXUm1znrC6X+99oKf4DxnEF651YZw2dB1ndErdyWlEyGkQEOvL0LADqixzo5VAMIGvX8ElLoFTTaglLpIwtK+I3SOeJa4lviWB5fGtuG9ZfcvjWx7fuyPObr0PtNs4iLSP0xvGSTE+/QnxYxJwFGc8iJPqIL4C1d4b4oH2mxr/NfG7ZWiXkSGUWEK7l7H+MvkKHxmR96CI6MCqrYfbjV6rl95iFHnfb9F9VJy7KGngX7fpBrdE+cjk7o0OUou2zJ/5XDPp3SvOW1N7D4uh/5jef4DBiBy0fd/zltKO3pWG/82p6bifhtPOIZBLzduVtOIrqV30JmY4AYUAmzeMcJYEQCdIIt3ELtAA/ACXNIZQ0wg83bc+eBCD5qMemBEUxPjlm54OIUBdejOyzQ2eD4EH1AwuHzALYIYf5sT1kCMIIEAhbZ1qs14IfogLLwYfHdRjL9KjxUM5XKNxFzwKnpalEbghhC5EenRSX0/UMNa+o1IXQgKhFsXZiXPTzkyUiMHT0WAXVKUUu+QueV7tUDF5FEXVqC533X66yvo8qvKIPSvTq9dHyeZMqv4ZmfDE2p+F9gQ7OCpPpjlLeI4XiktdBwBrlus2N/rnZaGgr4HY7i1qVi1FKi+5Uigl4TNbswumePszcsveQWPanOBT3qS5yAQr/sQi0Sq0QugPdDO8+gPdn3SW07Kss8utxMqB9m9el+hTHI5cEvqUxBF+RRMHtvaN68cj4kc0pnTiu56eUSnTBe8GozCIJiSYUBp4gafn0PaWd5E1zNe7wFjLZZ/JRS2y4fNb+brMsx0aVSkK9YZVqqnN1QxdqHVEr4pFzk1izeDFS056lZTtpc2oZ3V93Fa4ItZ+snhT5mUNtfYQbyGLjiaWGh7t2I6LGB5iOEgPkch27/EyYzgMTSw1XIi5da0LlPZRUtKbEdIMGlQ+rDBTMDOndaAphLqwK6xOkV51oVIr8L5ZJVhsndyhTnqjzu1DdGqv8fom1afuiqyf/xo8f1xyxfTFLnC9YBJHUYDf7iSObZUe1ef0itcFz20VFlgKTdlI2xa70j6ZNpJ/YGr5qsh+5wts6A9Mz1SFrlnWvXsZT8UKBe1+l3ymC+MPDNXuZnxR8z5FublNW2jMWzLsiWvbRtXPdbl6W6w/YtUduTod9/FMZVqLStc2JDjkr/i+fjFLDI+IbCiHwUuMItXjCoFQ5gR52j6DGTxl7fPk2TlWAGvUssQqe7etBVvBBTqD2nAa6PKGX5tc4PjFQtdjIOcrvFCDMuVeNCtei3SHPDP3c3S96aMbdfFp1KFMPuPIOqqWfY7x9S0NASyvlgZ82pU92/L6IIFG22/zueQK2plzhn2yRRIN3r4rs86tTovM9Y8FWInCcMKKoSRSlsgybxT+XEI8i/3PJet3N/LwqqRLEyWC0PwsQ3PUNXtz0fLdoMHMii9Ygkelt29chYP4Cn+P2O5V3RwxD7+ILOPFzl9WYA0aJHGkVjYdgMcAzw5FK0yPmWCD+umA+yaEyTGE9MdCeDdIONUsSvrh4TBF9E6Y9vHciJL7Q1BqqxqtaTVdltN/UBq3ccBi97Jek3bRXhIOgbX7A9mHYNifXtSNruFIvrMVg9C2ouvdCHM3Sw0Yx1PXDEuplZAeOk2/oLa9/ZsgCu6GiP9bWBFpjyXMai5Sob4NwryDYDdD4Sdo4Tkkz2AM7U04zJvCTF9nr+IhSATUAKFJd4u4PxLUIhHeDAS9A4j7J3mYxvHwFDJXyu4/m178B1BLBwiDTvRwewYAABwTAABQSwECFAAUAAgACABaku9CRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAFqS70KDTvRwewYAABwTAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAEwcAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "true" showToolBarHelp = "true" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" useLocalJar="true"/> | <ggb_applet width="773" height="571" version="4.2" ggbBase64="UEsDBBQACAAIAFqS70IAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACABaku9CAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbL1YbW/bNhD+nP6Kgz61a2KTendgt2gLDOuQdsXSDd2+DJRE22xkSRMpWy7643ckJVt2XtokQ9HYJ1L3/twd6U5ftqsc1ryWoixmDh0RB3iRlpkoFjOnUfOz2Hn54sl0wcsFT2oG87JeMTVz/JHr7OVwNfJCLSyymROFLE5Txs7mcZKd+SSjZ4kbTs7cLKVeyAKSJZED0EpxXpTv2YrLiqX8Ml3yFbsoU6aMzqVS1fl4vNlsRr31UVkvxotFMmpl5gB6XsiZ0z2co7oDoY1n2F1C6PjTuwur/kwUUrEi5Q7oqBrx4snJdCOKrNzARmRqOXNigmEsuVgsMczQCxwYa6YKY614qsSaSxQdLE3MalU5ho0V+v2JfYJ8F44DmViLjNczh4zoxEW9ZS14obr3tLMz7jVM14JvrCr9ZKz4ZIKZWwspkpzPnDnLJUYiinmNWUQn6gaXUm1znrC6X+99oKf4DxnEF651YZw2dB1ndErdyWlEyGkQEOvL0LADqixzo5VAMIGvX8ElLoFTTaglLpIwtK+I3SOeJa4lviWB5fGtuG9ZfcvjWx7fuyPObr0PtNs4iLSP0xvGSTE+/QnxYxJwFGc8iJPqIL4C1d4b4oH2mxr/NfG7ZWiXkSGUWEK7l7H+MvkKHxmR96CI6MCqrYfbjV6rl95iFHnfb9F9VJy7KGngX7fpBrdE+cjk7o0OUou2zJ/5XDPp3SvOW1N7D4uh/5jef4DBiBy0fd/zltKO3pWG/82p6bifhtPOIZBLzduVtOIrqV30JmY4AYUAmzeMcJYEQCdIIt3ELtAA/ACXNIZQ0wg83bc+eBCD5qMemBEUxPjlm54OIUBdejOyzQ2eD4EH1AwuHzALYIYf5sT1kCMIIEAhbZ1qs14IfogLLwYfHdRjL9KjxUM5XKNxFzwKnpalEbghhC5EenRSX0/UMNa+o1IXQgKhFsXZiXPTzkyUiMHT0WAXVKUUu+QueV7tUDF5FEXVqC533X66yvo8qvKIPSvTq9dHyeZMqv4ZmfDE2p+F9gQ7OCpPpjlLeI4XiktdBwBrlus2N/rnZaGgr4HY7i1qVi1FKi+5Uigl4TNbswumePszcsveQWPanOBT3qS5yAQr/sQi0Sq0QugPdDO8+gPdn3SW07Kss8utxMqB9m9el+hTHI5cEvqUxBF+RRMHtvaN68cj4kc0pnTiu56eUSnTBe8GozCIJiSYUBp4gafn0PaWd5E1zNe7wFjLZZ/JRS2y4fNb+brMsx0aVSkK9YZVqqnN1QxdqHVEr4pFzk1izeDFS056lZTtpc2oZ3V93Fa4ItZ+snhT5mUNtfYQbyGLjiaWGh7t2I6LGB5iOEgPkch27/EyYzgMTSw1XIi5da0LlPZRUtKbEdIMGlQ+rDBTMDOndaAphLqwK6xOkV51oVIr8L5ZJVhsndyhTnqjzu1DdGqv8fom1afuiqyf/xo8f1xyxfTFLnC9YBJHUYDf7iSObZUe1ef0itcFz20VFlgKTdlI2xa70j6ZNpJ/YGr5qsh+5wts6A9Mz1SFrlnWvXsZT8UKBe1+l3ymC+MPDNXuZnxR8z5FublNW2jMWzLsiWvbRtXPdbl6W6w/YtUduTod9/FMZVqLStc2JDjkr/i+fjFLDI+IbCiHwUuMItXjCoFQ5gR52j6DGTxl7fPk2TlWAGvUssQqe7etBVvBBTqD2nAa6PKGX5tc4PjFQtdjIOcrvFCDMuVeNCtei3SHPDP3c3S96aMbdfFp1KFMPuPIOqqWfY7x9S0NASyvlgZ82pU92/L6IIFG22/zueQK2plzhn2yRRIN3r4rs86tTovM9Y8FWInCcMKKoSRSlsgybxT+XEI8i/3PJet3N/LwqqRLEyWC0PwsQ3PUNXtz0fLdoMHMii9Ygkelt29chYP4Cn+P2O5V3RwxD7+ILOPFzl9WYA0aJHGkVjYdgMcAzw5FK0yPmWCD+umA+yaEyTGE9MdCeDdIONUsSvrh4TBF9E6Y9vHciJL7Q1BqqxqtaTVdltN/UBq3ccBi97Jek3bRXhIOgbX7A9mHYNifXtSNruFIvrMVg9C2ouvdCHM3Sw0Yx1PXDEuplZAeOk2/oLa9/ZsgCu6GiP9bWBFpjyXMai5Sob4NwryDYDdD4Sdo4Tkkz2AM7U04zJvCTF9nr+IhSATUAKFJd4u4PxLUIhHeDAS9A4j7J3mYxvHwFDJXyu4/m178B1BLBwiDTvRwewYAABwTAABQSwECFAAUAAgACABaku9CRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAFqS70KDTvRwewYAABwTAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAEwcAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "true" showToolBarHelp = "true" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" useLocalJar="true"/> | ||
<br /> | <br /> | ||
<popup name="Antwort"> | <popup name="Antwort"> | ||
− | Die Funktion '''<span style="color: blue"><math>f(x)=\frac{ax+b}{x}</math></span>''' nähert sich für immer größer und immer kleiner werdende x- Werte immer mehr der '''<span style="color: orange">Gerade y = a</span>''' an. | + | Die Funktion '''<span style="color: blue"><math>f(x)=\frac{ax+b}{x}</math></span>''' nähert sich für immer größer und immer kleiner werdende x- Werte immer mehr der '''<span style="color: orange">Gerade y = a</span>''' an.<br /> |
+ | |||
+ | <big>⇒</big> <math>\lim_{x\rightarrow\infty} f(x) = \lim_{x\rightarrow\ -\infty} f(x) = a</math> | ||
</popup> | </popup> | ||
<br /> | <br /> | ||
<br /> | <br /> | ||
<big>Im nächsten Applet ist die Funktion <span style="color: blue">'''f(x) = a ∙ e<sup>b ∙ x</sup> + c</span>''' abgebildet.<br /> | <big>Im nächsten Applet ist die Funktion <span style="color: blue">'''f(x) = a ∙ e<sup>b ∙ x</sup> + c</span>''' abgebildet.<br /> | ||
− | Welcher Zusammenhang besteht hier zwischen den drei veränderlichen Zahlen '''a''', '''b''' und '''c''' und der <span style="color: orange">'''waagrechten Asymptote'''</span> von '''<span style="color: blue">f</span>'''?<br /> | + | Welcher Zusammenhang besteht hier zwischen den drei veränderlichen Zahlen '''a''', '''b''' und '''c''' und der <span style="color: orange">'''waagrechten Asymptote'''</span> von '''<span style="color: blue">f</span>''' ?<br /> |
</big> | </big> | ||
Zeile 97: | Zeile 99: | ||
<popup name="Antwort"> | <popup name="Antwort"> | ||
Die Funktion '''<span style="color: blue">f(x) = a ∙ e<sup>b ∙ x</sup> + c</span>''' nähert sich für immer '''kleiner''' werdende x- Werte immer weiter der '''<span style="color: orange">Gerade y = c</span>''' an, sofern '''b > 0''' ist.<br /> | Die Funktion '''<span style="color: blue">f(x) = a ∙ e<sup>b ∙ x</sup> + c</span>''' nähert sich für immer '''kleiner''' werdende x- Werte immer weiter der '''<span style="color: orange">Gerade y = c</span>''' an, sofern '''b > 0''' ist.<br /> | ||
− | Für '''b < 0''' nähert sich '''<span style="color: blue">f</span>''' für immer '''größer''' werdende x- Werte immer mehr der '''<span style="color: orange">Gerade y = c</span>''' an. | + | |
+ | <big>⇒</big> <math>\lim_{x\rightarrow\ -\infty} f(x) = c</math> | ||
+ | <br /> | ||
+ | <br /> | ||
+ | Für '''b < 0''' nähert sich '''<span style="color: blue">f</span>''' für immer '''größer''' werdende x- Werte immer mehr der '''<span style="color: orange">Gerade y = c</span>''' an.<br /> | ||
+ | |||
+ | <big>⇒</big> <math>\lim_{x\rightarrow\ +\infty} f(x) = c</math> | ||
</popup> | </popup> | ||
<br /> | <br /> | ||
Zeile 110: | Zeile 118: | ||
</div> | </div> | ||
+ | <br /> | ||
+ | <br /> | ||
+ | |||
+ | <big> Stimmt der Grenzwert einer Funktion für <math>{x\rightarrow\ +\infty}</math> mit dem Grenzwert für <math>{x\rightarrow\ -\infty}</math> überein, lassen sich beide Grenzwerte auch zusammenfassen, wie es in der folgenden Übung gemacht wurde.</big> | ||
</td></tr></table></center> | </td></tr></table></center> | ||
</div> | </div> | ||
Zeile 134: | Zeile 146: | ||
}} | }} | ||
|} | |} | ||
+ | <math>{x\rightarrow\ +\infty}</math> |
Version vom 15. Juli 2013, 17:44 Uhr
Will man anhand des Funktionsterms Aussagen über den Verlauf des Graphens machen, muss man auch wissen, wie sich die Funktion für immer größer und immer kleiner werdende x- Werte verhält. Bei ganzrationalen Funktionen hast du bereits vier Fälle über den charakteristischen Verlauf einer Funktion kennen gelernt.
Diese Vermutung lässt sich mathematisch untersuchen:
sprich"Limes von f (x) für x gegen + "
wird untersucht, wie sich f (x) für immer kleiner werdende x- Werte verhält.
|
AllgemeinIm Applet siehst du die gebrochen rationale Funktion . Über die Schieberegler a und b lässt sich der Graph der Funktion verändern. Betrachte auch hier das Verhalten der Funktion für x gegen + oder - , indem du die GeoGebra-Werkzeugleiste benutzt.
Allgemein gilt: Auf gleiche Weise definiert man den Grenzwert einer Funktion für immer kleiner werdende x- Werte, also für x gegen - , mit .
Stimmt der Grenzwert einer Funktion für mit dem Grenzwert für überein, lassen sich beide Grenzwerte auch zusammenfassen, wie es in der folgenden Übung gemacht wurde. |
ÜbungOrdne den Funktionsgraphen den richtigen Grenzwert zu.
Manipulationen an Funktionen |