Achtung:

Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.

Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.


Gerne kannst Du natürlich weiterarbeiten

im neuen Projektwiki (projekte.zum.de).

Test: Unterschied zwischen den Versionen

Aus Projektwiki - ein Wiki mit Schülern für Schüler.
Wechseln zu: Navigation, Suche
Zeile 11: Zeile 11:
 
<popup name="Lösung 1: Ableitung von f(x)">Die Ableitung von <math>f(x)</math> ist <math>f'(x)=-2/3x</math>.</popup>
 
<popup name="Lösung 1: Ableitung von f(x)">Die Ableitung von <math>f(x)</math> ist <math>f'(x)=-2/3x</math>.</popup>
 
<popup name="Lösung 2: Steigung im Punkt x=-3">Die Steigung im Punkt <math>x=-3</math> ist <math>f'(x)=-2/3x=2</math>.</popup>
 
<popup name="Lösung 2: Steigung im Punkt x=-3">Die Steigung im Punkt <math>x=-3</math> ist <math>f'(x)=-2/3x=2</math>.</popup>
<popup name="Lösung3: y-Achsenabschnitt">Der y-Achsenabschnitt ist <math>0=2*(-3)+b</math>, also <math>b=6</math>.</popup>
+
<popup name="Lösung 3: y-Achsenabschnitt">Der y-Achsenabschnitt ist <math>0=2*(-3)+b</math>, also <math>b=6</math>.</popup>
 
<popup name="Lösung 4: Tangentengleichung">Die Gleichung der Tangente lautet <math>y=2x+6</math>.</popup>
 
<popup name="Lösung 4: Tangentengleichung">Die Gleichung der Tangente lautet <math>y=2x+6</math>.</popup>
  
 
}}
 
}}

Version vom 13. November 2018, 18:23 Uhr

Stift.gif   Aufgabe 3

Die Tangente an die Funktion f(x)=x^3+2x^2+5x-4 im Punkt x=5 soll berechnet werden. Im folgenden Applet siehst du die dazu vorgenommenen Rechenschritte und Anweisungen.

Stift.gif   Aufgabe 4

Bestimme die Gleichung der Tangente an die Funktion f(x)=-1/3x^2+3 im Punkt x=-3.