Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.
Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.
Gerne kannst Du natürlich weiterarbeiten
im neuen Projektwiki (projekte.zum.de).Verhalten nahe 0: Unterschied zwischen den Versionen
Aus Projektwiki - ein Wiki mit Schülern für Schüler.
Zeile 1: | Zeile 1: | ||
{{Aufgaben|1 Zuordnung von Graph und Funktionsgleichung|<iframe src="https://learningapps.org/watch?v=p391nnp6k19" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | {{Aufgaben|1 Zuordnung von Graph und Funktionsgleichung|<iframe src="https://learningapps.org/watch?v=p391nnp6k19" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | ||
− | <popup Name="Tipp">Bsp. Schreibweise: Die Funktion <math>f(x)=x^4+x-1</math> hat als höchsten Exponenten 4, verhält sich also gegen Unendlich wie <math>g(x)=x^4</math>. Also geht sie für x gegen - Unendlich gegen + Unendlich und für x gegen + Unendlich auch gegen + Unendlich.</popup> | + | <popup Name="Tipp">Durch Klicken auf den Graphen wird dieser größer und ist besser zu erkennen.</popup> |
+ | <popup Name="Tipp">Bsp. Schreibweise: Die Funktion <math>f(x)=x^4+x-1</math> hat als höchsten Exponenten 4, verhält sich also gegen Unendlich wie <math>g(x)=x^4</math>. Also geht sie für x gegen - Unendlich gegen + Unendlich und für x gegen + Unendlich auch gegen + Unendlich. | ||
+ | Die Funktion verhält sich nahe 0 wie der x-Wert mit dem kleinsten Exponenten und dem absoluten Glied, also wie <math>h(x)=x-1</math>. Damit ist es nahe 0 annähernd eine Gerade, die die Steigung 1 und den y-Achsenabschnitt -1 hat.</popup> | ||
}} | }} | ||
Version vom 6. November 2019, 10:12 Uhr
|
Gegeben ist die Funktion f mit . Untersucht das Verhalten des Graphen für x gegen Unendlich und für x nahe 0. |
Untersucht das Verhalten des Graphen für x gegen Unendlich und für x nahe 0. a) b) c) |