Achtung:

Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.

Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.


Gerne kannst Du natürlich weiterarbeiten

im neuen Projektwiki (projekte.zum.de).

Test: Unterschied zwischen den Versionen

Aus Projektwiki - ein Wiki mit Schülern für Schüler.
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „=='''Spielwiese'''== ==='''Schreiben im Wiki'''=== Neben normalem Text kann man auch ''kursiven'' oder '''fett gedruckten Text''' schreiben. <span style="color…“)
 
 
(20 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
=='''Spielwiese'''==
 
==='''Schreiben im Wiki'''===
 
Neben normalem Text kann man auch ''kursiven'' oder '''fett gedruckten Text''' schreiben. <span style="color: red">Ebenso sind andere Farben möglich, um etwas hervorzuheben.</span>
 
<popup name="Versteckte Hinweise und Lösungen">Ganz einfach per Mausklick aktivierbar.</popup>
 
==='''Vorlagen'''===
 
{{Aufgabe|2+3}}
 
{{Aufgaben|1|2+3}}
 
{{Aufgaben|Der Parameter a|2+3}}
 
{{Übung|2+3}}
 
{{Merke|2+3}}
 
==='''Dateien'''===
 
[[Datei:Video-Basketballwurf.gif|200px|links]]
 
[[Datei:Turret-arch-1364314 1280.jpg|300px|rechts]]
 
  
 +
{{Aufgaben|3|Die Tangente an die Funktion <math>f(x)=x^3+2x^2+5x-4</math> im Punkt <math>x=5</math> soll berechnet werden. Im folgenden Applet siehst du die dazu vorgenommenen Rechenschritte und Anweisungen.
 +
<iframe src="https://learningapps.org/watch?v=ppge2zo5318" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
 +
<popup name="Tipp">Eine Tangentengleichung hat die Form <math>y=mx+b</math>, wobei <math>m</math> die Steigung der Tangente ist und <math>b</math> der y-Achsenabschnitt.</popup>
 +
}}
 +
{{Aufgaben| 4|
 +
Bestimme die Gleichung der Tangente an die Funktion <math>f(x)=-1/3x^2+3</math> im Punkt <math>x=-3</math>.
 +
<popup name="Tipp">Erinnere dich zuerst daran, wie eine Tangentengleichung aussieht. Aufgabe 3 kann dir dabei helfen.
 +
Um die Steigung m zu ermitteln, benötigst du die Ableitung und musst anschließend die Ableitung im Punkt <math>x=-3</math> bestimmen. Was ist also der Zusammenhang zwischen der Ableitung in dem Punkt und der Steigung?
 +
Wenn du die Steigung berechnet hast, fehlt dir nur noch der y-Achsenabschnitt. Dazu setzt du alle bekannten Werte in die allgemeine Tangentengleichung ein und formst um.
  
 +
Schließlich kannst du die vollständige Tangentengleichung aufstellen. </popup>
 +
<popup name="Lösung 1: Ableitung von f(x)">Die Ableitung von <math>f(x)</math> ist <math>f'(x)=-2/3x</math>.</popup>
 +
<popup name="Lösung 2: Steigung im Punkt x=-3">Die Steigung im Punkt <math>x=-3</math> ist <math>f'(x)=-2/3x=2</math>.</popup>
 +
<popup name="Lösung 3: y-Achsenabschnitt">Der y-Achsenabschnitt ist <math>0=2*(-3)+b</math>, also <math>b=6</math>.</popup>
 +
<popup name="Lösung 4: Tangentengleichung">Die Gleichung der Tangente lautet <math>y=2x+6</math>.</popup>
  
 
+
}}
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
==='''Interaktive Applets'''===
+
 
+
<iframe src="https://learningapps.org/watch?app=1270966" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
+

Aktuelle Version vom 8. Dezember 2018, 13:01 Uhr

Stift.gif   Aufgabe 3

Die Tangente an die Funktion f(x)=x^3+2x^2+5x-4 im Punkt x=5 soll berechnet werden. Im folgenden Applet siehst du die dazu vorgenommenen Rechenschritte und Anweisungen.

Stift.gif   Aufgabe 4

Bestimme die Gleichung der Tangente an die Funktion f(x)=-1/3x^2+3 im Punkt x=-3.