Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.
Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.
Gerne kannst Du natürlich weiterarbeiten
im neuen Projektwiki (projekte.zum.de).Grenzwerte im Unendlichen: Unterschied zwischen den Versionen
Zeile 20: | Zeile 20: | ||
|valign="top" width="30%"|<iframe src="http://LearningApps.org/watch?v=pvu3bym5c" style="border:0px;width:100%;height:855px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | |valign="top" width="30%"|<iframe src="http://LearningApps.org/watch?v=pvu3bym5c" style="border:0px;width:100%;height:855px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | ||
− | |valign="top"| <center><math>f(x)=\frac{4x-3}{x}</math></center><br /> | + | |valign="top"| <center><big><math>f(x)=\frac{4x-3}{x}</math></big></center><br /> |
<big> | <big> | ||
#Fülle die '''Wertetabelle''' vollständig aus, indem du die Funktionswerte in das jeweilige Feld eingibst. Wenn sich das Feld grün färbt, war deine Eingabe richtig.<br /> | #Fülle die '''Wertetabelle''' vollständig aus, indem du die Funktionswerte in das jeweilige Feld eingibst. Wenn sich das Feld grün färbt, war deine Eingabe richtig.<br /> | ||
Zeile 39: | Zeile 39: | ||
Der Graph der Funktion '''<span style="color: #3A5FCD ">f</span>''': x -> <math>\frac{4x-3}{x}</math> scheint sich für immer größer werdende x- Werte der Gerade '''<span style="color: #EE7600 ">y = 4</span>''' anzunähern.<br /> | Der Graph der Funktion '''<span style="color: #3A5FCD ">f</span>''': x -> <math>\frac{4x-3}{x}</math> scheint sich für immer größer werdende x- Werte der Gerade '''<span style="color: #EE7600 ">y = 4</span>''' anzunähern.<br /> | ||
Für immer kleiner werdende x- Werte nähern sich die Funktionswerte scheinbar ebenfalls dem Wert '''<span style="color: #EE7600 ">4</span>''' an.<br /> | Für immer kleiner werdende x- Werte nähern sich die Funktionswerte scheinbar ebenfalls dem Wert '''<span style="color: #EE7600 ">4</span>''' an.<br /> | ||
+ | Durch das GeoGebra-Werkzeug "Vergrößere" hat es aber den Anschein, als würden sich die beiden Graphen nie berühren.<br /> | ||
</popup> | </popup> | ||
<br /> | <br /> |
Version vom 10. Juni 2013, 13:05 Uhr
Will man anhand des Funktionsterms Aussagen über den Verlauf des Graphens machen, muss man auch wissen, wie sich die Funktion für immer größer und immer kleiner werdende x- Werte verhält. Bei ganzrationalen Funktionen hast du bereits vier Fälle über den charakteristischen Verlauf einer Funktion kennen gelernt.
Diese Vermutung lässt sich mathematisch untersuchen:
|
Allgemein gilt: Äquivalent dazu definiert man den Grenzwert einer Funktion für immer kleiner werdende x- Werte, also für x gegen - .
Manipulationen an Funktionen |