Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.
Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.
Gerne kannst Du natürlich weiterarbeiten
im neuen Projektwiki (projekte.zum.de).Rechnen mit rationalen Zahlen: Unterschied zwischen den Versionen
Zeile 1: | Zeile 1: | ||
<u></u><div style="padding:1px;background: #FF0000;border:0px groove;"> | <u></u><div style="padding:1px;background: #FF0000;border:0px groove;"> | ||
− | |||
− | |||
<div style="margin:0; margin-right:50px; margin-left:50px; border:5px solid #FFFFFF; padding: 1em 1em 1em 1em; background-color:#FFFFFF; align:left;"> | <div style="margin:0; margin-right:50px; margin-left:50px; border:5px solid #FFFFFF; padding: 1em 1em 1em 1em; background-color:#FFFFFF; align:left;"> | ||
<big><span style="color:#C00000"> | <big><span style="color:#C00000"> | ||
− | |||
== <colorize>Was sind rationale Zahlen?</colorize> == | == <colorize>Was sind rationale Zahlen?</colorize> == | ||
− | Unter rationalen Zahlen versteht man alle | + | Unter rationalen Zahlen versteht man alle dir bereits bekannten "ganzen Zahlen" (Z). |
− | Zu den rationalen Zahlen (Q) gehören jetzt aber außerdem noch Brüche und Dezimalzahlen. | + | Zu den rationalen Zahlen (Q) gehören jetzt aber außerdem noch alle Brüche und Dezimalzahlen. |
<span style="color: #FF0000">Bsp. zu Brüchen: </span> <math>\frac{1}{2}</math> oder <math>3</math> <math>\frac{3}{6}</math> oder - <math>\frac{3}{4}</math> | <span style="color: #FF0000">Bsp. zu Brüchen: </span> <math>\frac{1}{2}</math> oder <math>3</math> <math>\frac{3}{6}</math> oder - <math>\frac{3}{4}</math> | ||
Zeile 22: | Zeile 19: | ||
[[Datei:Snipping tool.PNG|Rationale Zahlen, Grafik|]] | [[Datei:Snipping tool.PNG|Rationale Zahlen, Grafik|]] | ||
− | '''<span style="color: #FF0000"> Beachte:</span>''' Die Division mit rationalen Zahlen ist nun auch möglich, wenn der Dividend kein ganzzahliges Vielfaches des Divisors ist. Durch die Zahl 0 darf jedoch immer noch nicht dividiert werden! | + | '''<span style="color: #FF0000"> Beachte:</span>''' Die Division mit rationalen Zahlen ist nun auch möglich, wenn der Dividend kein ganzzahliges Vielfaches des Divisors ist. <br /> |
+ | Durch die Zahl 0 darf jedoch immer noch nicht dividiert werden! | ||
+ | <br /> | ||
Verschiedene Schreibweisen: <math>\frac{1}{4}</math> = <math>0,25</math> = <math>25%</math> | Verschiedene Schreibweisen: <math>\frac{1}{4}</math> = <math>0,25</math> = <math>25%</math> | ||
+ | <br /> | ||
− | Alle Darstellungsformen sind mathematisch korrekt und bedeuten das Gleiche. Je nach Aufgabenstellung könnt ihr die Zahlen nach Belieben umformen. | + | Alle Darstellungsformen sind mathematisch korrekt und bedeuten das Gleiche. <br /> |
+ | Je nach Aufgabenstellung könnt ihr die Zahlen nach Belieben umformen. | ||
− | Verstanden? Dann ordne doch die unten | + | Verstanden? <br /> |
+ | Dann ordne doch die unten stehenden grünen Zahlen passend den bereits vorgegeben Zahlen zu. | ||
Zeile 34: | Zeile 36: | ||
{| | {| | ||
− | | 0, | + | | 0,4 || 40% || <math>\frac{2}{5}</math> |
|- | |- | ||
− | | 80% || 0,8 ||<math>\frac{4}{5}</math> | + | | 37,5% || 0,375 || <math>\frac{3}{8}</math> |
+ | |- | ||
+ | | <math>\frac{9}{20}</math> || 45%|| 0,45 | ||
+ | |- | ||
+ | | 1,1 || 110% || <math>\frac{11}{10}</math> | ||
+ | |- | ||
+ | | 80% || 0,8 || <math>\frac{4}{5}</math> | ||
|- | |- | ||
| <math>\frac{9}{20}</math> || 45%|| 0,45 | | <math>\frac{9}{20}</math> || 45%|| 0,45 | ||
Zeile 53: | Zeile 61: | ||
<div style="margin:0; margin-right:4px; margin-left:3px; border:5px solid #FF0000; padding: 1em 1em 1em 1em; background-color:#FFFFF; align:left;"> | <div style="margin:0; margin-right:4px; margin-left:3px; border:5px solid #FF0000; padding: 1em 1em 1em 1em; background-color:#FFFFF; align:left;"> | ||
− | |||
− | |||
<big>'''<span style="color: #FF0000">Zur Erinnerung </span>'''</big> | <big>'''<span style="color: #FF0000">Zur Erinnerung </span>'''</big> | ||
Zeile 61: | Zeile 67: | ||
'''1. Addition''' | '''1. Addition''' | ||
− | Gleiche Vorzeichen: | + | Gleiche Vorzeichen: Addiere die Summanden und übernimm das gemeinsame Vorzeichen in die Summe. |
+ | |||
+ | Verschiedene Vorzeichen: Subtrahiere die kleinere Zahl von der größeren. Übernimm das Vorzeichen der größeren Zahl. | ||
+ | |||
+ | |||
+ | |||
− | |||
'''2. Subtraktion''' | '''2. Subtraktion''' | ||
− | + | Subtrahierst du eine kleinere Zahl von einer größeren, dann ist dein Ergebnis positiv. | |
− | + | Subtrahierst du eine größere Zahl von einer kleineren, dann ist dein Ergebnis negativ. | |
− | + | Subtrahierst du zwei negative Beträge subtrahieren, dann ist dein Ergebnis negativ. | |
− | |||
− | + | [[Datei:Multiplikation bsp.PNG|rechts|210px|Multiplikation]] | |
− | |||
− | + | '''3. Multiplikation''' | |
+ | Multipliziere die beiden Faktoren miteinander. | ||
− | + | :-> Bei <span style="color: #FF0000">gleichen</span> Vorzeichen ist dein Ergebnis'''<span style="color: #FF0000"> positiv </span>'''. | |
+ | :-> Bei <span style="color: #FF0000">ungleichen</span> Vorzeichen ist dein Ergebnis '''<span style="color: #FF0000"> negativ </span>'''. | ||
− | |||
− | |||
− | |||
− | : | + | [[Datei:Division bsp.PNG|rechts|210px|Division]] |
− | + | '''4. Divison:''' | |
+ | Dividiere den Dividend durch den Divisor. | ||
+ | :-> Bei <span style="color: #FF0000">gleichen</span> Vorzeichen ist dein Ergebnis'''<span style="color: #FF0000"> positiv </span>'''. | ||
+ | :-> Bei <span style="color: #FF0000">ungleichen</span> Vorzeichen ist dein Ergebnis '''<span style="color: #FF0000"> negativ </span>'''. | ||
− | |||
</div> | </div> | ||
+ | <br /> | ||
+ | <br /> | ||
− | + | Mit den folgenden Aufgaben kannst du das Gelernte anwenden. Viel Spaß:) | |
Zeile 117: | Zeile 128: | ||
Welche Zahl muss man zu (−3,4) addieren um 5 zu erhalten? '''8,4''' | Welche Zahl muss man zu (−3,4) addieren um 5 zu erhalten? '''8,4''' | ||
− | Welche Zahl muss man von 2,7 subtrahieren um (−1) zu erhalten?''' | + | Welche Zahl muss man von 2,7 subtrahieren um (−1) zu erhalten?'''3,7''' |
− | Welche Zahl muss man zu <math>\frac{4}{8}</math> addieren um 1 zu erhalten? '''<math>\frac{ | + | Welche Zahl muss man zu <math>\frac{4}{8}</math> addieren um 1 zu erhalten? '''<math>\frac{1}{2}</math>''' |
Welche Zahl muss man zu -2<math>\frac{2}{4}</math> addieren um (−1) zu erhalten? '''<math>\frac{3}{2}</math>''' | Welche Zahl muss man zu -2<math>\frac{2}{4}</math> addieren um (−1) zu erhalten? '''<math>\frac{3}{2}</math>''' | ||
Zeile 130: | Zeile 141: | ||
</div> | </div> | ||
− | Aufgabe 2 | + | Aufgabe 2: |
<iframe src="https://learningapps.org/watch?v=p7zc9uzxa17" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | <iframe src="https://learningapps.org/watch?v=p7zc9uzxa17" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | ||
Zeile 146: | Zeile 157: | ||
{{Vorlage:Lesepfad Ende | {{Vorlage:Lesepfad Ende | ||
− | |Link zurück=[[Julius-Echter-Gymnasium/Mathematik/ | + | |Link zurück=[[Julius-Echter-Gymnasium/Mathematik/Netze|zu Netzen und Oberflächeninhalt]] |
− | |Link vor=[[Julius-Echter-Gymnasium/Mathmatik/Rechenvorteile|zu | + | |Link vor=[[Julius-Echter-Gymnasium/Mathmatik/Rechenvorteile|zu Rechenvorteilen]] |
|Text Copyright= | |Text Copyright= | ||
}} | }} |
Version vom 24. Januar 2020, 21:13 Uhr
Was sind rationale Zahlen?
Unter rationalen Zahlen versteht man alle dir bereits bekannten "ganzen Zahlen" (Z).
Zu den rationalen Zahlen (Q) gehören jetzt aber außerdem noch alle Brüche und Dezimalzahlen.
Bsp. zu Brüchen: oder oder -
Bsp. zu Dezimalzahlen: oder ()
1. Die Menge der rationalen Zahlen
Beachte: Die Division mit rationalen Zahlen ist nun auch möglich, wenn der Dividend kein ganzzahliges Vielfaches des Divisors ist.
Durch die Zahl 0 darf jedoch immer noch nicht dividiert werden!
Verschiedene Schreibweisen: = =
Alle Darstellungsformen sind mathematisch korrekt und bedeuten das Gleiche.
Je nach Aufgabenstellung könnt ihr die Zahlen nach Belieben umformen.
Verstanden?
Dann ordne doch die unten stehenden grünen Zahlen passend den bereits vorgegeben Zahlen zu.
0,4 | 40% | |
37,5% | 0,375 | |
45% | 0,45 | |
1,1 | 110% | |
80% | 0,8 | |
45% | 0,45 |
2. Rechnen mit rationalen Zahlen
Für das Rechnen mit rationalen Zahlen gelten die gleichen Regeln wie für das Rechnen mit ganzen Zahlen.
Zur Erinnerung
1. Addition
Gleiche Vorzeichen: Addiere die Summanden und übernimm das gemeinsame Vorzeichen in die Summe.
Verschiedene Vorzeichen: Subtrahiere die kleinere Zahl von der größeren. Übernimm das Vorzeichen der größeren Zahl.
2. Subtraktion
Subtrahierst du eine kleinere Zahl von einer größeren, dann ist dein Ergebnis positiv.
Subtrahierst du eine größere Zahl von einer kleineren, dann ist dein Ergebnis negativ.
Subtrahierst du zwei negative Beträge subtrahieren, dann ist dein Ergebnis negativ.
3. Multiplikation
Multipliziere die beiden Faktoren miteinander.
- -> Bei gleichen Vorzeichen ist dein Ergebnis positiv .
- -> Bei ungleichen Vorzeichen ist dein Ergebnis negativ .
4. Divison:
Dividiere den Dividend durch den Divisor.
- -> Bei gleichen Vorzeichen ist dein Ergebnis positiv .
- -> Bei ungleichen Vorzeichen ist dein Ergebnis negativ .
Mit den folgenden Aufgaben kannst du das Gelernte anwenden. Viel Spaß:)
zu Netzen und Oberflächeninhalt | zu Rechenvorteilen |