Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.
Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.
Gerne kannst Du natürlich weiterarbeiten
im neuen Projektwiki (projekte.zum.de).Test: Unterschied zwischen den Versionen
Zeile 42: | Zeile 42: | ||
''Hinweis: Beachte hier, dass die Dezimalzahlen mit Punkt und nicht wie gewohnt mit Komma geschrieben werden. Verwende für das Ausfüllen der Lücken bitte die folgende Schreibweise für Koordinaten: "(x/y)". '' | ''Hinweis: Beachte hier, dass die Dezimalzahlen mit Punkt und nicht wie gewohnt mit Komma geschrieben werden. Verwende für das Ausfüllen der Lücken bitte die folgende Schreibweise für Koordinaten: "(x/y)". '' | ||
− | <iframe src="https://learningapps.org/watch?v=pf5x5ysw218" style="border:0px;width:80%;height: | + | <iframe src="https://learningapps.org/watch?v=pf5x5ysw218" style="border:0px;width:80%;height:350px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> |
}} | }} | ||
− | <popup name="Tipp" | + | <popup name="Tipp zu Lücke 5" Sollte dir die 5. Lücke Probleme bereiten, überlege dir mithilfe des Applets, ob der Abstand zwischen den Punkten größer oder kleiner wird oder dieser gleich bleibt.</popup> |
− | Sollte dir die 5. Lücke Probleme bereiten, überlege dir mithilfe des Applets, ob der Abstand zwischen den Punkten größer oder kleiner wird oder dieser gleich bleibt.</popup> | + | |
Version vom 13. November 2018, 17:26 Uhr
Dieser Lernpfad beschäftigt sich mit der Steigung eines Funktionsgraphen in einem Punkt. In den Aufgaben 1 und 2 wird die grundlegende Vorstellung von Sekanten und Tangenten behandelt. In den Aufgaben 3, 4 und 5 geht es darum Tangentengleichungen und Normalengleichungen aufzustellen. Aufgabe 6 behandelt den Zusammenhang der Steigung und der Ableitung in einem Punkt. Bei den Aufgaben 7 und 8 handelt es sich um Forderaufgaben. |
Lückentexte zu Tangente und Sekante
|
In diesem Applet siehst du den Graphen einer Funktion f und eine Gerade a. Weiterhin findest du in der rechten oberen Ecke zwei Regler, an denen du x0 und h einstellen kannst.
Benötigst du einen Tipp? Dann klicke auf die Glühbirne in der oberen linken Ecke des Lückentextes. Hinweis: Beachte hier, dass die Dezimalzahlen mit Punkt und nicht wie gewohnt mit Komma geschrieben werden. Verwende für das Ausfüllen der Lücken bitte die folgende Schreibweise für Koordinaten: "(x/y)".
|
b) In welchem Punkt berührt die Tangente den Graphen ?
}}
|
Ableitung und Steigung
Schaue dir das Applet an und entscheide auf Grundlage dessen, ob die unten stehenden Aussagen richtig oder falsch sind. Hinweis: Du kannst den Punkt P und auch die damit verbundene Tangente t mit deiner Maus bewegen, um dir die Aussagen zu veranschaulichen.
|
Forderaufgaben
In der Abbildung siehst du eine Funktion, sowie eine Tangente dieser Funktion im Punkt A. Mit dem Schieberegler kannst du an der markierten Stelle ran- und rauszoomen. Auf der rechten Seite der Abbildung siehst du alles vergrößert. Probiere zunächst aus, was passiert, wenn du ganz nah reinzoomst und den Ausschnitt so weit es geht vergrößerst. Bewerte folgende Aussage: "Wenn man sehr stark zoomt, stimmt die Funktion an der Stelle A mit der Tangente überein". Was hast du gesehen? Stimmst du zu? Wenn ja, warum? Halte deine Überlegungen stichpunktartig fest und überprüfe diese anschließend anhand der unten stehenden Lösung. |
In der untenstehenden Grafik siehst du eine Funktion, sowie deren Punkte P und Q. Bei P und Q ist jeweils eine Tangente an die Funktion angelegt, erkennnbar durch die rot gestrichelten Linien.Die beiden Punkte lassen sich verschieben. a) Bestimme mithilfe der Abbildung die Ableitung der Funktion im Punkt P.
Versuche nachzuvollziehen was Lisa meint, indem du wie sie die Punkte verschiebst. Findest du auch zwei Tangenten? Kann es überhaupt zwei Tangenten in einem Punkt geben? Wie würdest du Lisas Frage beantworten: Was bedeutet das für die Ableitung in diesem Punkt? und für die Ableitung der Funktion?
|