Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.
Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.
Gerne kannst Du natürlich weiterarbeiten
im neuen Projektwiki (projekte.zum.de).Grenzwerte im Unendlichen: Unterschied zwischen den Versionen
Zeile 15: | Zeile 15: | ||
− | ''Hierfür ein Beispiel:</big> | + | ''Hierfür ein Beispiel:''<center><math>f(x)=\frac{4x-3}{x}</math></center><br /></big> |
− | + | ||
{| | {| | ||
|valign="top" width="30%"|<iframe src="http://LearningApps.org/watch?v=pvu3bym5c" style="border:0px;width:100%;height:855px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | |valign="top" width="30%"|<iframe src="http://LearningApps.org/watch?v=pvu3bym5c" style="border:0px;width:100%;height:855px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | ||
− | |valign="top"| | + | |valign="top"|<big> |
− | <big> | + | |
#Fülle die '''Wertetabelle''' vollständig aus, indem du die Funktionswerte in das jeweilige Feld eingibst. Wenn sich das Feld grün färbt, war deine Eingabe richtig.<br /> | #Fülle die '''Wertetabelle''' vollständig aus, indem du die Funktionswerte in das jeweilige Feld eingibst. Wenn sich das Feld grün färbt, war deine Eingabe richtig.<br /> | ||
#Übertrage die berechneten Punkte in das '''GeoGebra-Applet''' und skizziere den Verlauf des Funktionsgraphen von f über den Button "Freihandskizze erkennen".<br /> | #Übertrage die berechneten Punkte in das '''GeoGebra-Applet''' und skizziere den Verlauf des Funktionsgraphen von f über den Button "Freihandskizze erkennen".<br /> | ||
Zeile 28: | Zeile 26: | ||
− | <ggb_applet width=" | + | <ggb_applet width="691" height="488" version="4.2" ggbBase64="UEsDBBQACAAIAHNW7UIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACABzVu1CAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbK1YbY/TOBD+vPyKUT7BadvGsZ2kqAUBEndIu4BuuRN335zEbc2mSS9x2hTx429sJ31bdsW+iG0njsfz8njmscvkdbvMYS2rWpXF1CND3wNZpGWmivnUa/RsEHuvXz2bzGU5l0klYFZWS6GnHhsG3n4djoY0NItVNvUikmWzRLCBCKUYsGCcDsaBiAZZJkMisoBmsfQA2lq9LMqPYinrlUjlVbqQS3FRpkJbmwutVy9Ho81mM+y9D8tqPprPk2FbZx5g5EU99bqHl2juaNGGWvXA98no6+WFMz9QRa1FkaJ/k1WjXj07m2xUkZUb2KhML0z0sQcLqeYLTJNzTHNklFaY60qmWq1ljUsPhjZnvVx5Vk0UZv7MPUG+S8eDTK1VJqup5w+DKOaccBr4lLIgRB9lpWShO13S+Rz11iZrJTfOrHmyHpk/jnALVK2SXE69mchrzEoVswoRxYCqBoe13uYyEVU/3sdDzvEfKqjv0tjCrXMwTD1K6Xk8Po98/5xz34Vy6NcDXZa5NeoDH8OPHxD4gQ/nRhAnAhRh6KZ8986nTgROMCe402FuOXOqzOkwp8PoHWl2432e3YujRPs06WGaBPMznxA/Nv+TPOODPIlJ4gcQE70VFEzcxMZvBOuGoRtGVhDfCdJNxubL4hU+MiP6oIzIgVdXDrc7vVEuvcdwTH7dY/CoPHdZBj/LMuC3ZPlIcHunhB84RV/2z35uuKT3yvNWaO/hMWSPaf0HOIz8o7bve95J0sm7YHiyoCajngwnXUBQL4xuV9JaLmsTIh1bcgICHJs3jJBLOJAxisg0cQCEA+M4JDGERkZATd8yoBCD0SMULAXxGL+Y7ekQONoyLyPX3EAZcArEEhcDRAEs+SEmAUUNzoHjIuOdGLc0BBbigMbAMEBDe5GhForrcIzOA6AEqFlLIghCCAOIDHUSZhg1jE3saDSA0IfQLEXuRN50nIkrYqAmG+yCVVmrHbgLma92u2JxVMWq0R123ft0mfU46vJEPSvT67cnYEtR6/4ZlfDA2h+L7gA7OjXPJrlIZI53iytTBwBrkZs2t/ZnZaGhr4HYvZtXYrVQaX0ltcZVNXwTa3EhtGzfo3bdB2hd28N8Ips0V5kSxd9YJMaEMQj92W7Jqz/bGfGdl7Qsq+xqW2PlQPuvrEqMieEhHfuchNGY8NBU9rab8f0hiyIa8pCOIx5EHAs3FbmlqSEPAjLGemNxFEbYo9tbpmjoXMv1LjXRyrrHcl6p7PD5Q/22zLPdfqxKVeh3YqWbyt7TkCgrk9ObYp5LC62lXrzxpNdJ2V45TKmz9WW7wlGXejJ/V+ZlBdiQAcdM5p1MnLQ6JrCdlm91fKvh95ukst08GQdWw8rESauFu+5C6xIlfZb9LohW1ZZq0PhhjdmSmXqtB02h9IUbYX2q9LpLlbgFH5tlguXWrTu2SX5qc/sQmyZqvMvV+mt3XzbP/xw8f1lILcwtjweUj+Mo4vgdjOPY1elJhU6uZVXI3NVhgaXQlE3tGmNX3GeTppafhV68KbI/5Rxb+rMwrKoxNKe6Dy+TqVriQve+A1+YwvgLU3VvMzmvZA9Rbq/Wbmvs7FFX3HhtTb2vyuWHYv0Fq+4k1Mmoz2dSp5VamdqGBGn+Wu7rF1ESeEhkh+sw+RqzSA1h4UZoswm5lJUHotGLEkvrclspsYQLjABNIAlgemO4FApJF4vbNH+7qmRtfpK4HQZ0gCTVGiZ73r6AKTxn8Bu0MAD6AkbQWs8yl0u8e4O2jTFrChvDrkhm9l5vigHK5Bty2UkR7aHHFDJLuLZ0PnXKiZvEtSdNRPyuRTh2pshXC1s0Hcy52MrqCHjr7tNsVksNLVIZEvx26g0YP5i+LLNut0hHqqqV2WmJ7FtRI7le408MLHBset0xg334Q+HPtaIzhFXrQLoBl7G1g2L+SKjSm1D1rGRBspzzAKgsUsHPgQruAMq2QG1MGGfGiG3y7wb2nfd7g4ms/1/hltSObLBCc5UqfTfUCd52pNgXZmLRxpAbeYMvfmUPnroiGXNA0/5wO0G655XuVAIL+RHceKKZkrDa75vi2o5m90MlfUJUnqL4GIscKuFToPK7rEQmTxEZHZKnvQt1/2Hy6n9QSwcIC9ic0zcGAADgEQAAUEsBAhQAFAAIAAgAc1btQkXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACABzVu1CC9ic0zcGAADgEQAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAM8GAAAAAA==" showResetIcon = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "true" showToolBarHelp = "true" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" useLocalJar="true" /> |
<br /> | <br /> | ||
<br /> | <br /> | ||
Zeile 77: | Zeile 75: | ||
<center><table border="0" width="800px" cellpadding=5 cellspacing=15> | <center><table border="0" width="800px" cellpadding=5 cellspacing=15> | ||
<tr><td width="800px" valign="top"> | <tr><td width="800px" valign="top"> | ||
+ | === <big>Allgemein</big> === | ||
<div class="lueckentext-quiz"> | <div class="lueckentext-quiz"> | ||
Allgemein gilt:<br /> | Allgemein gilt:<br /> | ||
Zeile 86: | Zeile 85: | ||
Äquivalent dazu definiert man den Grenzwert einer Funktion für '''immer kleiner werdende''' x- Werte, also für x gegen - <math>\infty</math>. | Äquivalent dazu definiert man den Grenzwert einer Funktion für '''immer kleiner werdende''' x- Werte, also für x gegen - <math>\infty</math>. | ||
+ | </div> | ||
+ | </td></tr></table></center> | ||
</div> | </div> | ||
+ | <div style="padding:1px;background:#66CD00;border:0px groove;"> | ||
+ | |||
+ | |||
+ | <center><table border="0" width="800px" cellpadding=5 cellspacing=15> | ||
+ | <tr><td width="800px" valign="top"> | ||
+ | === <big>Übung</big> === | ||
<br /> | <br /> | ||
<br /> | <br /> |
Version vom 13. Juli 2013, 10:04 Uhr
Will man anhand des Funktionsterms Aussagen über den Verlauf des Graphens machen, muss man auch wissen, wie sich die Funktion für immer größer und immer kleiner werdende x- Werte verhält. Bei ganzrationalen Funktionen hast du bereits vier Fälle über den charakteristischen Verlauf einer Funktion kennen gelernt.
Diese Vermutung lässt sich mathematisch untersuchen:
|
AllgemeinAllgemein gilt: Äquivalent dazu definiert man den Grenzwert einer Funktion für immer kleiner werdende x- Werte, also für x gegen - . |
Übung
Manipulationen an Funktionen |