Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.
Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.
Gerne kannst Du natürlich weiterarbeiten
im neuen Projektwiki (projekte.zum.de).Testseite: Unterschied zwischen den Versionen
Zeile 18: | Zeile 18: | ||
<iframe src="https://learningapps.org/watch?v=pk702c34c18" style="border:0px;width:100%;height:300px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | <iframe src="https://learningapps.org/watch?v=pk702c34c18" style="border:0px;width:100%;height:300px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | ||
+ | <popup name="Tipp"> | ||
+ | Achte auf die Vorzeichen! | ||
+ | </popup> | ||
+ | <popup name="Erläuterung zum Differenzenquotienten 1"> | ||
+ | ====Differenzenquotient? Was war das denn nochmal?==== | ||
+ | Der Quotient <math>\frac{f(b)-f(a)}{b-a}</math> wird Differenzenquotient genannt. Dieser Quotient beschreibt, wie groß der Unterschied zwischen den Werten der Funktion an den Intervallgrenzen <math>(f(b) - f(a))</math> im Verhältnis zu der Länge des Intervalls <math>(b-a)</math> ist. Damit entspricht dieser Quotient der Steigung der Geraden (Sekanten) durch die Punkte <math>(a|f(a))</math> und <math>(b|f(b))</math>. | ||
+ | </popup> | ||
+ | |||
+ | <popup name="Erläuterung zum Differenzenquotienten 2"> | ||
+ | <iframe width="560" height="315" src="https://www.youtube.com/embed/IuaWZ6CLniM" frameborder="0" gesture="media" allowfullscreen></iframe> | ||
+ | </popup> | ||
+ | |||
+ | |||
'''b)''' Interpretiere alle Ergebnisse aus a) im Sachzusammenhang. Schreibe in dein Heft. <br/> | '''b)''' Interpretiere alle Ergebnisse aus a) im Sachzusammenhang. Schreibe in dein Heft. <br/> | ||
'''c)''' Wie groß ist die Beschleunigung des Feuerwerkskörpers drei Sekunden nach dem Start?<br/> | '''c)''' Wie groß ist die Beschleunigung des Feuerwerkskörpers drei Sekunden nach dem Start?<br/> | ||
<iframe src="https://learningapps.org/watch?v=paog8ud6a18" style="border:0px;width:100%;height:150px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | <iframe src="https://learningapps.org/watch?v=paog8ud6a18" style="border:0px;width:100%;height:150px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | ||
'''d)''' Erkläre, warum die vorliegende Modellierung nur in den ersten fünf Sekunden nach dem Start geeignet ist? Schreibe in dein Heft. | '''d)''' Erkläre, warum die vorliegende Modellierung nur in den ersten fünf Sekunden nach dem Start geeignet ist? Schreibe in dein Heft. | ||
+ | <popup name="Tipp"> | ||
+ | Überlege, wie der Graph der Funktion für Werte von t>5 verläuft. | ||
+ | </popup> | ||
+ | <popup name="Lösung"> | ||
+ | Die Rakete kann nicht unendlich hoch fliegen und bereits nach 5 Sekunden ist eine Höhe von 175 Metern erreicht. Nach der Explosion des Feuerwerkskörpers fällt er wieder runter und verliert somit an Höhe, die Steigung der Funktion müsste demnach irgendwann wieder negativ werden, was nach der obigen Modellierung für keine positiven Werte von t eintrifft. | ||
+ | </popup> | ||
}} | }} | ||
Version vom 19. Oktober 2018, 14:09 Uhr
„Auf dieser Seite findest du Aufgaben, die dein Verständnis zum Sachkontext von Ableitungen vertiefen. Du wiederholst, in welchen Sachsituationen welche Rechnung benötigt werden. Ebenso wirst du vertiefen, welche mathematischen Ausdrücke auf welche Weise interpretiert werden. Die Aufgaben sind von leicht bis schwierig sortiert. Falls du dich schon sehr sicher fühlst, gibt es am Ende eine Bonusaufgabe.“ |
Inhaltsverzeichnis |
Aufgabe 3: Silvesterkracher
Die Höhe einer gezündeten Feuerwerksrakete kann in den ersten fünf Sekunden nach dem Start annähernd durch die Funktion beschrieben werden (siehe Abbildung). Dabei wird die Zeit t nach dem Start in Sekunden und die Höhe h(t) in Metern angegeben.
|
Spielwiese
=Schreiben im Wiki
Neben normalem Text kann man auch kursiven oder fett gedruckten Text schreiben. Ebenso sind andere Farben möglich, um etwas hervorzuheben.
Vorlagen
Tangente |
Sachzusammenhang |
Änderung |
Ableitungsregeln |
Differenzenquotient |
Dateien
Interaktive Applets