Achtung:

Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.

Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.


Gerne kannst Du natürlich weiterarbeiten

im neuen Projektwiki (projekte.zum.de).

Benutzer:Valentin WWU3: Unterschied zwischen den Versionen

Aus Projektwiki - ein Wiki mit Schülern für Schüler.
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
 
==Aufgabe 5: Ein Tag im Zoo==
 
==Aufgabe 5: Ein Tag im Zoo==
  
{{Aufgaben| 5 : Ein Tag im Zoo|Ein Zoo ist bekanntermaßen in den Sommerferien am besten besucht. Die Besucherzahlen eines bestimmten Zoos (in 100 Personen) kann durch die Funktion b(t) = - 0,05 t³ + 1,8 t² - 19,2 t + 62,5 für 10 < t ≤ 19,5 näherungsweise beschrieben werden. Dabei gibt ''t'' die Uhrzeit in Stunden an.<br /> <br />
+
{{Aufgaben| 5 : Ein Tag im Zoo|Ein Zoo ist bekanntermaßen in den Sommerferien am besten besucht. Die Besucherzahlen eines bestimmten Zoos (in 100 Personen) kann durch die Funktion b(t) = - 0,05 t³ + 1,8 t² - 19,2 t + 62,5 für 10 < t ≤ 19,5 näherungsweise beschrieben werden. Dabei gibt ''t'' die Uhrzeit in Stunden an.<br /> <br />}}
 
[[Datei:Besucherzahlen2.png|500px|zentriert|thumb|Abb. 5.1: Besucherzahl eines Zoos]] <br />
 
[[Datei:Besucherzahlen2.png|500px|zentriert|thumb|Abb. 5.1: Besucherzahl eines Zoos]] <br />
 
Die Lösungen musst du per Hand ausrechnen und kannst sie anschließend mit diesen vergleichen. <br />
 
Die Lösungen musst du per Hand ausrechnen und kannst sie anschließend mit diesen vergleichen. <br />

Version vom 26. Oktober 2018, 22:56 Uhr

Aufgabe 5: Ein Tag im Zoo

Stift.gif   Aufgabe 5 : Ein Tag im Zoo

{{{2}}}

Abb. 5.1: Besucherzahl eines Zoos

Die Lösungen musst du per Hand ausrechnen und kannst sie anschließend mit diesen vergleichen.
a) Zu welcher Uhrzeit befinden sich am meisten Besucher in dem Zoo? Und wie viele sind es?


b) Wann ist die Besucherzahl am geringsten? Und warum ist es falsch, an dieser Stelle nach der Minimalstelle zu suchen?


c) Zu welcher Uhrzeit ist der Andrang in den Zoo am größten?



}}

Aufgabe 6: Die Autofahrt

Stift.gif   Aufgabe 6 : Die Autofahrt

Familie Müller fährt zusammen in den Urlaub. Der Sohn Peter möchte gerne wissen, wie weit sie insgesamt gefahren sind. Dazu hat er die Geschwindigkeit des Autos zu bestimmten Zeitpunkten auf der Anzeige im Auto abgelesen und sich notiert. Die Geschwindigkeit könnte man in einem Graphen darstellen, wie in Abbildung 6.1.

Geschwindigkeitsprofil einer Urlaubsfahrt

a) Fülle die Lücken mit den richtigen Antworten.


b) Was passiert in den Zeiträumen, in denen die Geschwindigkeit nicht konstant sind?


c) Wie viele Kilometer ist das Auto von Peters Familie in dem Zeitraum von Minute 67 bis Minute 82 gefahren?

Schreibe die Lösung in dein Heft.


d) Wie viele Kilometer hat Peters Familie in den ersten 2 Stunden näherungsweise zurückgelegt?

"Näherungsweise" bedeutet an dieser Stelle musst du nur die Phasen konstanter Geschwindigkeit in Betracht ziehen. Schreibe die Lösung in dein Heft.


e) Wir nehmen an, der abgebildete Graph beschreibt die Ableitung einer Funktion. Was gibt dann die Funktion an und wovon ist sie abhängig?

Schreibe die Lösung in dein Heft.


f) Berechne die durchschnittliche Geschwindigkeit, die Peters Familie in den ersten zwei Stunden gefahren ist.