Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.
Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.
Gerne kannst Du natürlich weiterarbeiten
im neuen Projektwiki (projekte.zum.de).Graphisches Ableiten: Unterschied zwischen den Versionen
Zeile 136: | Zeile 136: | ||
<popup name="Tipp 2">Was bedeuten negative beziehungsweise positive Funktionswerte der Ableitungsfunktion für ihre Stammfunktion?</popup> | <popup name="Tipp 2">Was bedeuten negative beziehungsweise positive Funktionswerte der Ableitungsfunktion für ihre Stammfunktion?</popup> | ||
<popup name="Tipp 3">Liegt eine Nullstelle in der Ableitung vor, hat die Stammfunktion hier eine Extremstelle. Verläuft die Ableitungsfunktion unterhalb der x-Achse, so fällt die Stammfunktion auf diesem Intervall. Für einen Verlauf oberhalb der x-Achse steigt die Stammfunktion.</popup> | <popup name="Tipp 3">Liegt eine Nullstelle in der Ableitung vor, hat die Stammfunktion hier eine Extremstelle. Verläuft die Ableitungsfunktion unterhalb der x-Achse, so fällt die Stammfunktion auf diesem Intervall. Für einen Verlauf oberhalb der x-Achse steigt die Stammfunktion.</popup> | ||
− | <popup name="Lösung">[[Datei:Lösung 4.png|thumb|f(x)=3x^(3)+2x^(2)-5xF(x)=(3/4)x^(4)+(2/3)x^(3)-(5/2)x^(2)]]</popup> | + | <popup name="Lösung"> |
+ | [[Datei:Lösung 4.png|thumb|f(x)=3x^(3)+2x^(2)-5xF(x)=(3/4)x^(4)+(2/3)x^(3)-(5/2)x^(2)]]<br /> | ||
+ | </popup> | ||
'''b)''' Gibt es nur eine Möglichkeit, wie der Funktionsgraph verlaufen kann? Wie verändert eine Konstante den Verlauf von f(x) und was passiert mit ihr, wenn man f(x) ableitet? }} | '''b)''' Gibt es nur eine Möglichkeit, wie der Funktionsgraph verlaufen kann? Wie verändert eine Konstante den Verlauf von f(x) und was passiert mit ihr, wenn man f(x) ableitet? }} | ||
Version vom 15. November 2018, 17:06 Uhr
In diesem Lernpfad kannst du üben, Funktionen und ihre Ableitungen anhand ihrer Graphen zu untersuchen. Der Zusammenhang zwischen besonderen Punkten und Merkmalen einer Funktion und ihrer Ableitung stehen hier im Vordergrund. Im Folgenden findest du Aufgaben, um deine Kenntnisse im graphischen Ableiten zu vertiefen (Forderaufgaben) aber auch, um Lücken zu schließen und Stoff zu wiederholen (Förderaufgaben). Unter jeder Aufgabe gibt es Hilfestellungen, auf die du zurückgreifen kannst, wenn du mal nicht weiterkommst.
|
Förderaufgaben
Ordne den Graphen der Funktionen f(x) den richtigen Ableitungsgraphen zu, indem du jeweils zwei Kästchen per Mausklick zusammenführst. Das erreichst du, indem du die linke Maustaste über einem Kästchen gedrückt hältst und das Kästchen anschließend bewegst. Klicke anschließend auf den blauen Punkt in der rechten unteren Ecke der Aufgabe, um deine Lösungen zu kontrollieren.
|
Die Abbildung zeigt den Graphen einer Funktion f(x). Welche Annahmen kannst du über f'(x) treffen? Vervollständige die Sätze.
|
Bereit für die Forderaufgaben? Teste dein Wissen!
Finde die richtige Antwort. Du kannst die App mit einem Klick auf das Zeichen oben rechts im Vollbildmodus anzeigen lassen.
|
Forderaufgaben
a) Die Abbildung zeigt den Graphen einer Ableitungsfunktion f'(x). Skizziere die dazugehörige Funktion f(x) in deinem Heft und erkläre dein Vorgehen.
b) Gibt es nur eine Möglichkeit, wie der Funktionsgraph verlaufen kann? Wie verändert eine Konstante den Verlauf von f(x) und was passiert mit ihr, wenn man f(x) ableitet? |
Die Funktion f(x) beschreibt die Sonnenstunden eines Monats im vergangenen Jahr, dabei stehen die x-Werte für die einzelnen Monate und die Funktionswerte f(x) für die Gesamtsumme der Sonnenstunden im Monat. Die Funktionswerte findest du in der Tabelle. a) Skizziere die Funktion und ihre Ableitung in dein Heft.
|
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
f(x) | 77 | 57 | 148 | 138 | 201 | 194 | 188 | 168 | 116 | 90 | 25 | 13 |