Achtung:

Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.

Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.


Gerne kannst Du natürlich weiterarbeiten

im neuen Projektwiki (projekte.zum.de).

Quadratische Funktionen

Aus Projektwiki - ein Wiki mit Schülern für Schüler.
Wechseln zu: Navigation, Suche

In diesem Lernpfad geht es darum, dass du im Bereich der quadratischen Funktionen noch etwas sicherer wirst. Im Laufe dieses Lernpfads kannst du also noch einmal die Scheitelpunktform und die Normalform der quadratischen Funktion wiederholen und einige Übungsaufgaben dazu erledigen. Am Ende dieses Lernpfads erwartet dich dann noch eine Anwendungsaufgabe zu diesem Themengebiet.

Inhaltsverzeichnis

Die Scheitelpunktform

Die Parameter der Scheitelpunktform

Stift.gif   Aufgabe 1 Die Parameter der Scheitelpunktform erkunden

Fülle den folgenden Lückentext aus.



Scheitelpunktformen und ihre Graphen

Stift.gif   Aufgabe 2 Zuordnung von Scheitelpunktformen zu ihren Graphen

Ordne den angegebenen Graphen ihre Scheitelpunktform zu, indem du die zusammengehörigen Felder aufeinander ziehst.



Stift.gif   Aufgabe 3 Zeichnen von Graphen anhand der Scheitelpunktform

Skizziere die angegebenen Funktionen als Graphen in dein Heft:

1.\quad f(x)=3(x-2)^2+1
2.\quad g(x)=-0,5(x+1)^2-2



Funktionsgleichungen aufstellen

Stift.gif   Aufgabe 4 Funktionsgleichungen aufstellen

Stelle mit Hilfe der angegebenen Punkte die Funktionsgleichung auf:

Wanted: Parabel

a) Wir suchen die Parabel f mit dem Scheitelpunkt S(-3I1), die durch den Punkt P(2I6) verläuft.

b) Gesucht ist die Parabel g, die die y-Achse bei -4 schneidet, und die ihren Scheitelpunkt bei S(1I-1) hat.

Scheitelpunktform und Normalform

Stift.gif   Aufgabe 5 Rechnen mit der Scheitelpunktform und der Normalform

Fülle den Lückentext aus, indem du in die Lücken klickst und die richtige Antwort auswählst.



Von der Scheitelpunktform zur Normalform

Stift.gif   Aufgabe 6 Umformung von der Scheitelpunktform zur Normalform

Forme die folgenden Scheitelpunktformen in deinem Heft in die Normalenformen um und klicke dann das richtige Ergebnis an.



Von der Normalform zur Scheitelpunktform

In Aufgabe 5 hast du wiederholt, wie man die Normalform in die Scheitelpunktform überführt. Das kannst du in Aufgabe 9 üben. Zuerst wollen wir uns aber noch einmal genau ansehen, was die quadratische Ergänzung ist und warum man sie für die Umwandlung braucht. Wenn du dich mit der quadratischen Ergänzung schon sicher fühlst, kannst du direkt Aufgabe 9 bearbeiten.

Die quadratische Ergänzung ist ein Trick, den man benutzt, wenn die man die 1. oder 2. binomische Formel rückwärts anwenden anwenden möchte.
Zur Erinnerung:

Nuvola apps kig.png   Merke

1. Binomische Formel: (a+b)^2=a^2+2ab+b^2
2. Binomische Formel:  (a-b)^2=a^2-2ab+b^2

Wir wollen jetzt also nicht die Klammer ausmultiplizieren, sondern den Term zu so einem Klammerausdruck umformen, z.B. den Term x^2+6x+15.
Wie das funktioniert, kannst du in dieser Aufgabe noch mal wiederholen:

Stift.gif   Aufgabe 7 Die quadratische Ergänzung wiederholen

Wichtig: Wenn for dem x2 ein Faktor steht, muss dieser zunächst ausgeklammert werden:

Stift.gif   Aufgabe 8 Quadratische Ergänzung bei Vorfaktor

Ergänze in dem folgenden Beispiel die Umformungsschritte, indem du sie an die richtige Stelle ziehst.

3x^2-24x+60 | Faktor 3 ausklammern
3(x^2-8x+20) | Faktor 2 "herausziehen"
3(x^2-2 \cdot x \cdot 4 +20) | quadratische Ergänzung
3(x^2-2 \cdot x \cdot 4 + 4^2-4^2+20) | 2. Binomische Formel
3((x-4)^2-4^2+20) | zusammenfassen
3((x-4)^2+4) | ausmultiplizieren
3(x-4)^2+12


Stift.gif   Aufgabe 9 Umformung von der Normalform zur Scheitelpunktform

Anwendungsaufgabe "Rakete"

Stift.gif   Aufgabe 10 Rakete

Zum Abschluss eines Volksfestes wird ein Feuerwerk vom Dach eines Parkhauses abgeschossen. Der Pyrotechniker hat für die Beschreibung der Flugbahn einer Rakete die Funktion
f(x)=-0.2x^2+8x+18
aufgestellt. Dabei entspricht x der horizontalen Entfernung von der Abschussstelle und f(x) der Höhe der Rakete; jeweils in Meter.

a) Berechne f(0) und beschreibe, was dieser Wert im Anwendungskontext bedeutet.


b) Berechne, wie weit die Rakete fliegen würde, bis sie auf den Boden auftrifft.


c) Nach wieviel Metern erreicht die Rakete ihre maximale Höhe? Welche Höhe erreicht sie?


d) Bei gleichbleibendem Startpunkt soll die Flugbahn so verändert werden, dass nach 10 m Entfernung vom Startpunkt die maximale Höhe von 120 m erreicht wird. Bestimme eine Funktionsgleichung für diese neue Flugbahn.


Zusatzaufgabe* Berechne die horizontale Entfernung vom Startpunkt, in der die Rakete theoretisch eine Flughöhe von 30 m hat.