Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.
Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.
Gerne kannst Du natürlich weiterarbeiten
im neuen Projektwiki (projekte.zum.de).Testseite
„Auf dieser Seite findest du Aufgaben, die dein Verständnis zum Sachkontext von Ableitungen vertiefen. Du wiederholst, in welchen Sachsituationen welche Rechnungen benötigt werden. Ebenso wirst du vertiefen, welche mathematischen Ausdrücke auf welche Weise interpretiert werden. Die Aufgaben 1-3 dienen als Einstieg und sind leichter zu lösen. In den Aufgaben 4-6 kannst du schwierigere Probleme lösen. Falls du dich schon sehr sicher fühlst, gibt es am Ende eine Bonusaufgabe.“ |
Inhaltsverzeichnis |
Aufgabe 1: Silvesterkracher
Die Höhe einer gezündeten Feuerwerksrakete kann in den ersten fünf Sekunden nach dem Start annähernd durch die Funktion beschrieben werden (siehe Abbildung 1). Dabei wird die Zeit t nach dem Start in Sekunden und die Höhe h(t) in Metern angegeben. a) Bestimme zu den folgenden Termen die entsprechenden Werte
c) Wie groß ist die Beschleunigung des Feuerwerkskörpers drei Sekunden nach dem Start? |
Aufgabe 2: Aussagen der Ableitungsfunktion und Änderung der Einheiten
b) In einem Wald werden nach einer Rodung neue Bäume gepflanzt. Der Förster misst die durchschnittliche Höhe der Bäume in Metern monatlich aus, notiert seine Messwerte und modelliert den Sachverhalt in einer Funktion f(x). Vervollständige die folgenden Aussagen. c) Zum Herbst wird das Wasser im städtischen Freibad aus dem Becken abgelassen. Eine Funktion f(x) ist die Ableitungsfunktion von g(x) und beschreibt die Abflussrate in Kubikmetern pro Stunde, wobei x die Zeit in Stunden angibt. Vervollständige die folgende Aussage.
|
Spielwiese
=Schreiben im Wiki
Neben normalem Text kann man auch kursiven oder fett gedruckten Text schreiben. Ebenso sind andere Farben möglich, um etwas hervorzuheben.
Vorlagen
Tangente |
Sachzusammenhang |
Änderung |
Ableitungsregeln |
Differenzenquotient |
Dateien
Interaktive Applets