Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.
Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.
Gerne kannst Du natürlich weiterarbeiten
im neuen Projektwiki (projekte.zum.de).Von der mittleren zur lokalen Änderungsrate
Dieser Lernpfad beschäftigt sich mit der mittleren und lokalen Änderungsrate.
Viel Spaß beim Bearbeiten! :) |
Inhaltsverzeichnis[Verbergen] |
Sekante: Eine Sekante ist eine Gerade zwischen zwei Punkten. Ihre Steigung heißt Sekantensteigung und gibt die mittlere Änderungsrate zwischen diesen beiden Punkten an. |
Tangente: Eine Tangente ist eine Gerade, die eine Kurve in einem bestimmten Punkt berührt. Dort haben die Kurve und die Tangente dieselbe Steigung. Diese Steigung entspricht der Ableitung der Funktion in diesem Punkt. |
Die lokale Änderungsrate Die lokale Änderungsrate einer Funktion Der Grenzwert . |
Bestimmung von mittleren Änderungsraten
Berechne jeweils die durchschnittliche Änderungsrate der Funktionen f, g und h in dem angegebenen Intervall auf einem separaten Blatt Papier. Prüfe im Anschluss die von dir errechneten Werte, indem du sie in die dafür vorgesehenen Kästchen unter der Aufgabe eingibst.
b) c)
|
Leider ist der Vorstand wegen der Vorbereitung der Jubiläumsfeier sehr beschäftigt und bittet dich, ihm bei der Beantwortung einiger Fragen zu helfen. Du kannst diese zunächst am besten auf einem separaten Blatt Papier lösen und sie anschließend mit den gegebenen Lösungen vergleichen. a) Wie viele Mitglieder sind seit 2010 im Durchschnitt pro Jahr in deinem Verein hinzugekommen?
b) Der aktuelle Vorstand arbeitet seit 2016 zusammen. Sein Ziel war eine Steigerung der Mitgliedszahlen. Diese sollte im Mittel größer sein als der durchschnittliche Mitgliederzuwachs in den Jahren davor (also von Beginn der Mitgliedererfassung bis zur Wahl des neuen Vorstands 2016). Ist es Ihnen gelungen ihr Ziel zu erreichen?
|
Unterscheidung der Änderungsraten
a) Ordne die Karten jeweils richtig zu, indem ihr sie entweder zur mittleren oder lokalen Änderungsrate zieht.
|
Änderungsraten im Sachzusammenhang
a) Berechne den zurückgelegten Weg nach 3 und 5 Sekunden. b) Berechne die Geschwindigkeit, die Tim nach 3 Sekunden bzw. nach 5 Sekunden mit seinem Fahrrad erreicht hat. c) Warum hat die oben genannte Formel im vorliegenden Sachzusammenhang für
|
Zusammenhang von mittlerer und lokaler Änderungsrate
In der folgenden Tabelle siehst du einige Funktionswerte der Funktion f aufgelistet. Außerdem wurden die Differenzenquotienten vom Punkt a) Beschreibe, was mit dem Differenzenquotient passiert, wenn sich die x-Werte 2 annähern. b) Erkläre, warum in der letzten Zeile unter "Differenzenquotient" ein "?" eingetragen ist. c) Was bedeutet das Ergebnis aus 1) für die durchschnittliche Änderungsrate und was bedeutet es für die momentane Änderungsrate im Punkt
|
Geometrischer Zusammenhang von mittlerer und lokaler Änderungsrate
a) Was gibt die Variable ms an? b) Fülle nun den folgenden Lückentext aus.
|