Achtung:

Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.

Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.


Gerne kannst Du natürlich weiterarbeiten

im neuen Projektwiki (projekte.zum.de).

Mathematik 9a

Aus Projektwiki - ein Wiki mit Schülern für Schüler.
< Mathematik und Informatik – Uni Marburg‎ | Gymnasium Philippinum
Version vom 1. Mai 2023, 22:19 Uhr von Roland Weber (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Auf dieser Seite sollen quadratische Funktionen untersucht werden.

Inhaltsverzeichnis

Einführung

Wir haben im Unterricht quadratische Funktionen der Form f(x)=ax^2 kennengelernt. Dabei ist x die Variable, die alle Zahlen durchläuft. a ist ein Parameter und steht für einzelne Werte, die man einsetzt, und damit jeweils eine spezielle quadratische Funktion erhält. Für  a=\frac{1}{4} erhält man die Funktion  f(x)=\frac{1}{4}x^2. Für  a=1 erhält man die einfachste quadratische Funktion  f(x)=x^2, deren Graph die Normalparabel ist.

Im Folgenden soll untersucht werden, wie sich eine Veränderung des Parameters a auf den Graphen auswirkt.

Der Parameter a

Wir betrachten zunächst nur den Parameter a und untersuchen  f(x)=a x^2.

Im Applet ist zunächst a=1 gesetzt, also die Normalparabel eingezeichnet. Mit Hilfe des Schiebereglers kannst du den Parameter ändern.

Stift.gif   Aufgabe 1

a) Untersuche , was passiert, wenn du a änderst.
b) Beschreibe deine Beobachtungen im Heft und fertige geeignete Skizzen an. Achte dabei darauf, für welche a sich das Verhalten entscheidend ändert.
c) Versuche das Verhalten mit Hilfe der Funktionsvorschrift zu erklären.


Der Parameter c

Wir betrachten zunächst nun quadratische Funktionen der Form  f(x)=x^2+c, wobei c wieder ein Parameter ist.
Im Applet ist zunächst c=0 gesetzt, also die Normalparabel eingezeichnet. Mit Hilfe des Schiebereglers kannst du den Parameter ändern.

Stift.gif   Aufgabe 2

a) Untersuche , was passiert, wenn du c änderst.
b) Beschreibe deine Beobachtungen möglichst genau im Heft und fertige geeignete Skizzen an.
c) Versuche das Verhalten mit Hilfe der Funktionsvorschrift zu erklären.


Kombination

Im Applet kannst du beide Parameter ändern.

Stift.gif   Aufgabe 3

a) Für welchen Wert von a geht der Graph von  f(x)=a x^2-3 durch den Punkt (2|1).
b) Für welchen Wert von a geht der Graph von  f(x)=a x^2+1 durch den Punkt (2|-1).
c) Für welchen Wert von c geht der Graph von  f(x)=\frac{1}{2} x^2+c durch den Punkt (4|3).
d) Für welche Werte von a und c geht der Graph durch den Punkt (1|2).
e) Löse die Aufgaben auch rechnerisch.