Achtung:

Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.

Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.


Gerne kannst Du natürlich weiterarbeiten

im neuen Projektwiki (projekte.zum.de).

Die Ableitung im Sachkontext: Unterschied zwischen den Versionen

Aus Projektwiki - ein Wiki mit Schülern für Schüler.
Wechseln zu: Navigation, Suche
(Aufgabe 2: Zuordnen)
 
(46 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 4: Zeile 4:
 
Die Aufgaben 1-3 dienen als Einstieg und sind leichter zu lösen. In den Aufgaben 4-5 kannst du schwierigere Probleme lösen. Falls du dich schon sehr sicher fühlst, kannst du dich an die letzte Aufgabe begeben.
 
Die Aufgaben 1-3 dienen als Einstieg und sind leichter zu lösen. In den Aufgaben 4-5 kannst du schwierigere Probleme lösen. Falls du dich schon sehr sicher fühlst, kannst du dich an die letzte Aufgabe begeben.
 
</td></tr></table></center> </div>
 
</td></tr></table></center> </div>
==Aufgabe 1: Dieselpreise==
+
<br />
 +
 
 +
==Durchschnittliche Änderungsrate im Sachzusammenhang==
 
{{Aufgaben|1: Dieselpreise|Die Abbildung 1.1 zeigt die Entwicklung des Dieselpreises in Deutschland im Zeitraum vom 12.10.2018 (Tag 0) bis zum 18.10.2018 (Tag 6). <br /> <br />
 
{{Aufgaben|1: Dieselpreise|Die Abbildung 1.1 zeigt die Entwicklung des Dieselpreises in Deutschland im Zeitraum vom 12.10.2018 (Tag 0) bis zum 18.10.2018 (Tag 6). <br /> <br />
 
[[Datei:Dieselpreis Entwicklung Oktober 2018.png|thumb|Abb. 1.1: Dieselpreisentwicklung|400px|zentriert]]<br />
 
[[Datei:Dieselpreis Entwicklung Oktober 2018.png|thumb|Abb. 1.1: Dieselpreisentwicklung|400px|zentriert]]<br />
Zeile 25: Zeile 27:
  
 
<br /> }}
 
<br /> }}
==Aufgabe 2: Zuordnen==
+
==Wiederholung wichtiger Signalwörter==
{{Aufgaben|2: Zuordnen|Der Graph der Funktion <math> f(t) </math> beschreibt die Flugbahn eines Balls. <math> f(t) </math> gibt die Höhe in Metern in Abhängigkeit von der Zeit <math> t </math> in Sekunden an. <br />
+
{{Aufgaben|2: Zuordnen|Der Graph der Funktion <math> f(t) </math> beschreibt die Flugbahn eines Balls. <math> f(t) </math> gibt die Höhe in Metern in Abhängigkeit von der Zeit <math> t </math> an. Dabei beschreibt <math> t </math> die Zeit in Sekunden. <br />
 
Fülle den folgenden Lückentext aus:  
 
Fülle den folgenden Lückentext aus:  
 
<iframe src="https://learningapps.org/watch?v=pxert0c0t18" style="border:0px;width:100%;height:700px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
 
<iframe src="https://learningapps.org/watch?v=pxert0c0t18" style="border:0px;width:100%;height:700px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
Zeile 50: Zeile 52:
 
7. Suche ich die  durchschnittliche Geschwindigkeit in einem Bereich m bis n, so suche ich für diesen Bereich '''die durchschnittliche Änderungsrate''', dies ist gerade '''der Wert des Differentenquotienten'''.</popup>}}
 
7. Suche ich die  durchschnittliche Geschwindigkeit in einem Bereich m bis n, so suche ich für diesen Bereich '''die durchschnittliche Änderungsrate''', dies ist gerade '''der Wert des Differentenquotienten'''.</popup>}}
  
==Aufgabe 3: Silvesterkracher==
+
==Funktionswerte und Ergebnisse im Sachzusammenhang deuten==
  
 
{{Aufgaben|3: Silvesterkracher|[[Datei:Rakete.jpg|Abb. 3.1: Höhe einer Feuerwerksrakete |thumb|250px|rechts]]Die Höhe einer gezündeten Feuerwerksrakete kann in den ersten fünf Sekunden nach dem Start annähernd durch die Funktion <math>h(t)=7t^2</math> beschrieben werden (siehe Abbildung 3.1). Dabei wird die Zeit t nach dem Start in Sekunden und die Höhe h(t) in Metern angegeben. <br/>
 
{{Aufgaben|3: Silvesterkracher|[[Datei:Rakete.jpg|Abb. 3.1: Höhe einer Feuerwerksrakete |thumb|250px|rechts]]Die Höhe einer gezündeten Feuerwerksrakete kann in den ersten fünf Sekunden nach dem Start annähernd durch die Funktion <math>h(t)=7t^2</math> beschrieben werden (siehe Abbildung 3.1). Dabei wird die Zeit t nach dem Start in Sekunden und die Höhe h(t) in Metern angegeben. <br/>
'''a)''' Bestimme die folgenden Werte. <br/>
+
'''a)''' Bestimme die folgenden Werte und trage sie unten in die Lücken ein. <br/><br />
# <math>h(2)</math>
+
 
# <math>h(4)-h(1)</math>
+
1. <math>h(2)</math><br /><br />
# <math>\frac{h(4)-h(1)}{4-1}</math>
+
 
# <math>h'(3)</math>
+
 
# <math>\frac{h(t)-h(4,5)}{t-4,5}</math> für t → 4,5
+
2. <math>h(4)-h(1)</math><br /><br />
# <math>h'(4,5)</math>
+
 
 +
 
 +
3. <math>\frac{h(4)-h(1)}{4-1}</math> <br /><br />
 +
 
 +
 
 +
4. <math>h'(3)</math><br /><br />
 +
 
 +
 
 +
5. <math>\frac{h(t)-h(4,5)}{t-4,5}</math> für t → 4,5<br /><br />
 +
 
 +
 
 +
6. <math>h'(4,5)</math><br />
 +
<br />
 +
 
  
 
<iframe src="https://learningapps.org/watch?v=pk702c34c18" style="border:0px;width:100%;height:300px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
 
<iframe src="https://learningapps.org/watch?v=pk702c34c18" style="border:0px;width:100%;height:300px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
 
<popup name="Tipp">
 
<popup name="Tipp">
Setze die entsprechenden Werte für t in die entsprechende Funktion ein. Die Ableitung der Funktion ist h'(t)=14t. Für 5. überlege, was dieser Ausdruck ist und ob du diesen anders schreiben kannst.
+
Setze die angegebenen Werte für t in die entsprechende Funktion ein.
 +
</popup>
 +
<popup name="Tipp zu 4. und 6.">
 +
Die Ableitung der Funktion ist gegeben durch h'(t)=14t.  
 +
</popup>
 +
<popup name="Tipp 1 zu 5.">
 +
Überlege, was dieser Ausdruck ist und ob du diesen anders schreiben kannst.
 +
</popup>
 +
<popup name="Tipp 2 zu 5.">
 +
Hier ist der Differenzialquotient gegeben. Dies ist der Grenzwert des Differenzenquotienten und entspricht der Ableitung der Funktion an der Stelle t=4,5. Also ist hier nach h'(4,5) gefragt.
 
</popup>
 
</popup>
  
 
   
 
   
'''b)''' Interpretiere alle Ergebnisse aus a) im Sachzusammenhang. Schreibe in dein Heft. <br/>
+
'''b)''' Interpretiere alle Ergebnisse aus a) im Sachzusammenhang. Schreibe deine Überlegungen in dein Heft. <br/>
 
<popup name="Lösung">
 
<popup name="Lösung">
 
# Die Rakete hat nach zwei Sekunden eine Höhe von 28 Metern.
 
# Die Rakete hat nach zwei Sekunden eine Höhe von 28 Metern.
 
# Zwischen der ersten und der vierten Sekunde überwindet die Rakete eine Höhe von 105 Metern.
 
# Zwischen der ersten und der vierten Sekunde überwindet die Rakete eine Höhe von 105 Metern.
# Zwischen der ersten und der vierten Sekunde beträgt die durchschnittliche Geschwindigkeit der Rakete 35 m/s.
+
# Zwischen der ersten und der vierten Sekunde beträgt die durchschnittliche Geschwindigkeit der Rakete <math>35\frac{m}{s}</math>.
# Drei Sekunden nach dem Start ist die momentane Geschwindigkeit der Rakete 42 m/s.
+
# Drei Sekunden nach dem Start ist die momentane Geschwindigkeit der Rakete <math>42\frac{m}{s}</math>.
# 4,5 Sekunden nach dem Start der Rakete beträgt die Geschwindigkeit der Rakete 63 m/s.
+
# 4,5 Sekunden nach dem Start der Rakete beträgt die Geschwindigkeit der Rakete <math> 63\frac{m}{s}</math>.
 
# siehe 5.
 
# siehe 5.
 
</popup>
 
</popup>
 +
 
'''c)''' Wie groß ist die Beschleunigung des Feuerwerkskörpers drei Sekunden nach dem Start?<br/>
 
'''c)''' Wie groß ist die Beschleunigung des Feuerwerkskörpers drei Sekunden nach dem Start?<br/>
 
<iframe src="https://learningapps.org/watch?v=paog8ud6a18" style="border:0px;width:100%;height:150px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
 
<iframe src="https://learningapps.org/watch?v=paog8ud6a18" style="border:0px;width:100%;height:150px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
'''d)''' Erkläre, warum die vorliegende Modellierung nur in den ersten fünf Sekunden nach dem Start geeignet ist? Schreibe in dein Heft.
+
 
 
<popup name="Tipp">
 
<popup name="Tipp">
Überlege, wie der Graph der Funktion für Werte von t>5 verläuft.
+
Die Funktion <math>h(t)</math> gibt die Höhe des Feuerwerkskörpers in Metern an und ist abhängig von der Zeit t in Sekunden. Die Geschwindigkeit der Rakete in <math>\frac{m}{s}</math> wird durch die erste Ableitung <math>h'(t)</math> angegeben. Um eine Funktion zu erhalten, die die Beschleunigung in <math>\frac{m}{s^2}</math> angibt, musst du die zweite Ableitung <math>h''(t)</math> bilden. Da nach der Beschleunigung drei Sekunden nach dem Start gefragt ist, muss man <math>h''(3)</math> berechnen.
 
</popup>
 
</popup>
 +
 
<popup name="Lösung">
 
<popup name="Lösung">
Die Rakete kann nicht unendlich hoch fliegen und bereits nach 5 Sekunden ist eine Höhe von 175 Metern erreicht. Nach der Explosion des Feuerwerkskörpers fällt er wieder runter und verliert somit an Höhe, die Steigung der Funktion müsste demnach irgendwann wieder negativ werden, was nach der obigen Modellierung für keine positiven Werte von t eintrifft.  
+
Es gilt: <math>h'(t)=14t</math>, <math>h''(t)=14</math>. Nun setzt man ein und erhält <math>h''(3)=14</math>. Die Beschleunigung beträgt also  <math>14\frac{m}{s^2}</math>
 
</popup>
 
</popup>
}}
 
  
 +
'''d)''' Erkläre, warum die oben angegebene Funktion h(t) nur in den ersten fünf Sekunden nach dem Start geeignet ist, um den Sachverhalt zu beschreiben. Schreibe die Erklärung in dein Heft.
 +
<popup name="Tipp">
 +
Überlege, wie der Graph der Funktion für Werte von t>5 verläuft und was dies für den Feuerwerkskörper bedeuten würde.
 +
</popup>
 +
<popup name="Lösung">
 +
Die Rakete kann nicht unendlich hoch fliegen und bereits nach 5 Sekunden ist eine Höhe von 175 Metern erreicht (denn h(5)=175). Nach der Explosion des Feuerwerkskörpers fällt er wieder runter und verliert somit an Höhe, die Steigung der Funktion müsste demnach irgendwann wieder negativ werden, was für h(t) aber für keine positiven Werte von t eintrifft.
 +
</popup>
 +
}}
  
==Aufgabe 4: Aussagen der Ableitungsfunktion und Änderung der Einheiten==
+
==Einheiten der Ableitungsfunktion==
 
{{Aufgaben|4: Aussagen der Ableitungsfunktion und Änderung der Einheiten|  
 
{{Aufgaben|4: Aussagen der Ableitungsfunktion und Änderung der Einheiten|  
  
 
'''a)''' Eine Funktion f(t) beschreibt die zurückgelegte Strecke eines Fahrradfahrers in Metern in Abhängigkeit von der Zeit t in Sekunden. Vervollständige die folgenden Aussagen.
 
'''a)''' Eine Funktion f(t) beschreibt die zurückgelegte Strecke eines Fahrradfahrers in Metern in Abhängigkeit von der Zeit t in Sekunden. Vervollständige die folgenden Aussagen.
 
<iframe src="https://learningapps.org/watch?v=ps4fbw3jt18" style="border:0px;width:100%;height:250px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
 
<iframe src="https://learningapps.org/watch?v=ps4fbw3jt18" style="border:0px;width:100%;height:250px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
 +
 +
<popup name="Tipp zu a) und b)">
 +
Wenn man die Ableitung bildet, verändert sich die Einheit der Funktionswerte! <br />
 +
Dies kann man sich anhand des Differentialquotienten <math>\frac{f(x_0+h)-f(x_0)}{h}</math> für h → 0 klar machen, der schließlich der Ableitung an der Stelle <math>x_o</math>, also <math>f'(x_0)</math> entspricht. Aus dem Differentialquotienten kann man die Einheit herleiten: Im Zähler stehen Werte der Ausgangsfunktion f und im Nenner steht h, also ein Wert der x-Achse. Man dividiert also die Einheit der Funktionswerte durch die Einheit der x-Achse.<br />
 +
Bei a) ist die Einheit der Funktionswerte der Funktion f(t) Meter. Die Werte der x-Achse sind in der Einheit Sekunden gegeben. Man erhält hier also für die Funktionswerte der Ableitungsfunktion die Einheit m/s. Dies steht für eine Geschwindigkeit. <br />
 +
Gehe in anderen Beispielen genauso vor.
 +
</popup>
  
 
'''b)''' In einem Wald werden nach einer Rodung neue Bäume gepflanzt. Der Förster misst die durchschnittliche Höhe der Bäume in Metern monatlich aus, notiert seine Messwerte und modelliert den Sachverhalt in einer Funktion f(x). Vervollständige die folgenden Aussagen.
 
'''b)''' In einem Wald werden nach einer Rodung neue Bäume gepflanzt. Der Förster misst die durchschnittliche Höhe der Bäume in Metern monatlich aus, notiert seine Messwerte und modelliert den Sachverhalt in einer Funktion f(x). Vervollständige die folgenden Aussagen.
 
<iframe src="https://learningapps.org/watch?v=p57tu5mda18" style="border:0px;width:100%;height:250px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
 
<iframe src="https://learningapps.org/watch?v=p57tu5mda18" style="border:0px;width:100%;height:250px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
  
<popup name="Tipp zu a) und b)">
 
Bei a) ist die Einheit der Funktionswerte der Funktion f(t) Meter. Die Werte der x-Achse sind in der Einheit Sekunden gegeben. Wenn man die Ableitung bildet, verändert sich die Einheit der Funktionswerte! Man dividiert die Einheit der y-Achse durch die Einheit der x-Achse. Bei a) erhält man für die Funktionswerte der Ableitungsfunktion also die Einheit m/s. Dies steht für eine Geschwindigkeit. Gehe in anderen Beispielen genauso vor.
 
</popup>
 
  
'''c)''' Zum Herbst wird das Wasser im städtischen Freibad aus dem Becken abgelassen. Eine Funktion f(x) ist die Ableitungsfunktion von g(x) und beschreibt die Abflussrate in Kubikmetern pro Stunde, wobei x die Zeit in Stunden angibt. Vervollständige die folgende Aussage.
+
'''c)''' Zum Herbst wird das Wasser im städtischen Freibad aus dem Becken abgelassen. Eine Funktion f'(x) ist die Ableitungsfunktion von f(x) und beschreibt die Abflussrate in Kubikmetern pro Stunde, wobei x die Zeit in Stunden angibt. Vervollständige die folgende Aussage.
 
<iframe src="https://learningapps.org/watch?v=pp7vnup6518" style="border:0px;width:100%;height:200px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
 
<iframe src="https://learningapps.org/watch?v=pp7vnup6518" style="border:0px;width:100%;height:200px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
  
Zeile 111: Zeile 148:
 
}}
 
}}
  
==Aufgabe 5: Ein Tag im Zoo==
+
==Funktionsuntersuchung==
  
{{Aufgaben|5 : Ein Tag im Zoo}}Ein Zoo ist bekanntermaßen in den Sommerferien am besten besucht. Die Besucherzahlen eines bestimmten Zoos (in 100 Personen) kann durch die Funktion <br /> b(t) = - 0,05 + 1,8 - 19,2 t + 62,5 für 10 < t 19,5 <br /> näherungsweise beschrieben werden. Dabei gibt ''t'' die Uhrzeit in Stunden an.<br /> <br />
+
{{Aufgaben|5: Ein Tag im Zoo|
 +
 
 +
Ein Zoo ist bekanntermaßen in den Sommerferien am besten besucht. Die Besucherzahlen (in 100 Personen) eines bestimmten Zoos können durch die Funktion <br /> <math>b(t) = - 0,05 t^3 + 1,8 t^2 - 19,2 t + 62,5</math> für <math>10 < t \leq 19,5</math> <br /> näherungsweise beschrieben werden. Dabei gibt <math>t</math> die Uhrzeit in Stunden an.<br /> <br />
 
[[Datei:Besucherzahlen2.png|500px|zentriert|thumb|Abb. 5.1: Besucherzahl eines Zoos]] <br />
 
[[Datei:Besucherzahlen2.png|500px|zentriert|thumb|Abb. 5.1: Besucherzahl eines Zoos]] <br />
 
Rechne die folgenden Aufgaben im Heft und vergleiche mit den angegebenen Lösungsvorschlägen. <br />
 
Rechne die folgenden Aufgaben im Heft und vergleiche mit den angegebenen Lösungsvorschlägen. <br />
 +
 
'''a)''' Zu welcher Uhrzeit befinden sich am meisten Besucher in dem Zoo? Und wie viele sind es?<br/>
 
'''a)''' Zu welcher Uhrzeit befinden sich am meisten Besucher in dem Zoo? Und wie viele sind es?<br/>
<popup name="Tipp">Die Ableitung lautet: (t) = - 0,15 + 3,6 t - 19,2 </popup>
+
 
<popup name="Lösung">Die Nullstellen der Ableitung entsprechen den Maximalstellen der Normalfunktion. Setzt man die Ableitung gleich 0, also 0 = (t) = - 0,15 + 3,6 t - 19,2 , dann erhält man <math>t_1</math> = 8 und <math>t_2</math> = 16. Da der Zoo erst um 10:00 Uhr (also t = 10) öffnet, ist <math>t_2</math>  die einzige Lösung. <br/> Setzt man das in die Funktion ein erhält man: b(16) = 11,3 . <br/>'''Die Antwort: Mit 1130 Besuchern sind um 16:00 Uhr die meisten Menschen im Zoo.</popup>
+
<popup name="Tipp 1">Bilde die erste und die zweite Ableitung.</popup>
 +
 
 +
<popup name="Tipp 2">Die Ableitungen lauten: <math>b ' (t) = - 0,15 t^2 + 3,6 t - 19,2</math> und <math>b '' (t) = - 0,3 t + 3,6 </math></popup>
 +
 
 +
<popup name="Lösung">Die Nullstellen der Ableitung entsprechen den Maximalstellen der Normalfunktion. Setzt man die Ableitung gleich 0, also <math>0 = b'(t) = - 0,15 t^2 + 3,6 t - 19,2</math>, dann erhält man <math>t_1 = 8</math> und <math>t_2 = 16 </math>. Da der Zoo erst um 10:00 Uhr (also <math>t = 10</math>) öffnet, ist <math>t_2</math>  die einzige Lösung. Kontrolliert man den Wert mit der hinreichenden Bedingung, so erhält man <math>b''(t_2)= - 1,2 < 0 </math>, also ist <math>t_2</math> die Maximalstelle. <br/> Setzt man die Maximalstelle in die Funktion ein erhält man: <math>b(16) = 11,3</math>. Da die Besucherzahlen in 100 Personen angegeben werden, ergibt sich die Lösung, wenn man 11,3 mit 100 multipliziert. <br/> <br/>'''Die Antwort: Mit 1130 Besuchern sind um 16:00 Uhr die meisten Menschen im Zoo.</popup>
 
<br/>
 
<br/>
'''b)''' Wann ist die Besucherzahl am geringsten? Und warum ist es falsch, an dieser Stelle nach der Minimalstelle zu suchen? <br/>
+
 
<popup name="Tipp">Bei dieser Aufgabe ist es wichtig, sich den Definitionsbereich noch einmal genauer anzugucken. Du darfst auch mit der Abbildung 5.1 deine Begründung unterstützen.</popup>
+
'''b)''' Begründe den so gewählten Definitionsbereich.
 +
 
 +
<popup name="Tipp">Die Wahl des Definitionsbereich hängt stark mit dem Sachzusammenhang zusammen.</popup>
 +
 
 +
<popup name="Lösung">Die Werte der Funktion <math>f</math>, die kleiner als 0 sind, ergeben im Sachzusammenhang keinen Sinn. Es gibt keine negative Anzahl an Besuchern in einem Zoo. Das wichtigste Argument ist an dieser Stelle jedoch die Uhrzeit: Grundsätzlich ist es nur sinnvoll, wenn <math>0 \leq t < 24 </math> gilt, da ein Tag nur 24 Stunden hat. Da der Zoo aber nur ab 10:00 Uhr und bis 19:30 Uhr geöffnet hat, fallen alle weiteren Werte von <math>f</math> weg, wenn nicht gilt: <math>10 < t \leq 19,5</math>.</popup>
 +
 
 +
 
 +
'''c)''' Wann ist die Besucherzahl am geringsten? <br/>
 +
 
 +
<popup name="Tipp 1">Bei dieser Aufgabe ist es wichtig, sich den Definitionsbereich noch einmal genauer anzugucken. Du darfst auch mit der Abbildung 5.1 deine Begründung unterstützen.</popup>
 +
 
 +
<popup name="Tipp 2">Warum ist es falsch, an dieser Stelle nach der Minimalstelle zu suchen?</popup>
 +
 
 
<popup name="Lösung">Die Besucherzahl ist um 19:30 Uhr am geringsten. Das ist der einzige Nullpunkt im Definitionsbereich. Die Minimalstelle liegt, wie man in der Abbildung deutlich erkennen kann unterhalb der x-Achse und eine negative Besucherzahl ist nicht möglich. Außerdem liegt diese Stelle nicht mehr im Definitionsbereich.</popup>
 
<popup name="Lösung">Die Besucherzahl ist um 19:30 Uhr am geringsten. Das ist der einzige Nullpunkt im Definitionsbereich. Die Minimalstelle liegt, wie man in der Abbildung deutlich erkennen kann unterhalb der x-Achse und eine negative Besucherzahl ist nicht möglich. Außerdem liegt diese Stelle nicht mehr im Definitionsbereich.</popup>
 
<br/>
 
<br/>
'''c)''' Zu welcher Uhrzeit ist der Andrang in den Zoo am größten? <br/>
+
 
 +
'''d)''' Zu welcher Uhrzeit ist der Andrang in den Zoo am größten? <br/>
 +
 
 
<popup name="Tipp 1">Mit der Frage nach dem größten Andrang ist der größte Zuwachs an Besuchern gemeint.</popup>
 
<popup name="Tipp 1">Mit der Frage nach dem größten Andrang ist der größte Zuwachs an Besuchern gemeint.</popup>
<popup name="Tipp 2">Die zweite Ableitung lautet: b´´(t) = - 0,3 t + 3,6</popup>
 
<popup name="Lösung">Indem die zweite Ableitung gleich 0 gesetzt wird, kann man die Wendestelle ausrechnen. Daraus ergibt sich t = 12. Also sind die meisten Menschen um 12:00 Uhr auf den Weg in den Zoo.</popup>}}
 
  
==Aufgabe 6: Die Autofahrt==
+
<popup name="Tipp 2">Der größte Zuwachs an Besuchern entspricht dem Maximum der ersten Ableitung.</popup>
{{Aufgaben| 6 : Die Autofahrt|Familie Müller fährt zusammen in den Urlaub. Der Sohn Peter möchte gerne wissen, wie weit sie insgesamt gefahren sind. Dazu hat er die Geschwindigkeit des Autos zu bestimmten Zeitpunkten auf der Anzeige im Auto abgelesen und sich notiert. Die Geschwindigkeit könnte man in einem Graphen darstellen, wie in Abbildung 6.1. <br/>
+
[[Datei:Geschwindigkeitsnotizen1.png|1000px|zentriert|thumb|Abb. 6.1: Geschwindigkeitsprofil einer Urlaubsfahrt]]<br />
+
  
'''a)''' Fülle die Lücken mit den richtigen Antworten.<br />
+
<popup name="Lösung">Indem die zweite Ableitung gleich 0 gesetzt wird, kann man die Wendestelle ausrechnen. Daraus ergibt sich t = 12. Da die dritte Ableitung konstant <math>b ' (t) = - 0,3</math> ist, wird auch das hinreichende Kriterium erfüllt. Also sind die meisten Menschen um 12:00 Uhr auf den Weg in den Zoo.</popup>
<iframe src="https://learningapps.org/watch?v=phzt4r2ba18" style="border:0px;width:100%;height:300px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
+
<br/>
<popup name="Tipp">Auf den einzelnen Straßen gelten folgende Geschwindigkeitsbeschränkungen: <br/> verkehrsberuhigte Straße: 5 km/h <br/> Straße der "30-Zone": 30 km/h <br/> Straße innerorts: 50 km/h <br/> Landstraße: 100 km/h <br/> Autobahn: 130 km/h </popup>
+
  
 +
'''e)''' Im Winter können die Besucherzahlen für diesen Zoo durch die Funktion <math> g(t) = 0,0625 t^3 - 3,25 t ^2 + 52,8125 t - 265,625</math> beschrieben werden. Im folgenden ist der Graph der Funktion gezeichnet:
 +
[[Datei:Winterbesuch.png|500px|zentriert|thumb|Abb. 5.2: Besuchszahlen im Winter]]
  
 +
Wie lauten die Öffnungszeiten im Winter? Argumentiere im Sachzusammenhang und mit der zweiten Ableitung.
  
'''b)''' Was passiert in den Zeiträumen, in denen die Geschwindigkeit nicht konstant sind? <br />
+
<popup name="Tipp 1">Warum kann nicht der gleiche Definitionsbereich wie für die Funktion <math>f</math> benutzt werden?</popup>
<popup name="Lösung">Wenn der Graph fällt, sinkt somit die Geschwindigkeit. Also wird das Auto gebremst. <br/> Steigt der Graph, so steigt auch die Geschwindigkeit und der Fahrer beschleunigt.</popup> <br />
+
  
'''c)''' Wie viele Kilometer ist das Auto von Peters Familie in dem Zeitraum von Minute 67 bis Minute 82 gefahren?
+
<popup name="Tipp 2">Ist die zweite Ableitung  <math> g'' </math> negativ , so hat der Graph der Funktion <math> g </math> eine Rechtskrümmung. Ist die zweite Ableitung größer 0, so besitzt der Graph der Funktion <math> g </math> eine Linkskrümmung.</popup>
  
Schreibe die Lösung in dein Heft. <br />
+
<popup name="Tipp 3">Wenn ein Graph zwischen zwei aufeinanderfolgenden Nullstellen rechtsgekrümmt ist, so liegt er im positiven Bereich. Ist er zwischen zwei Nullstellen linksgekrümmt, so ist er in diesem Bereich negativ. </popup>
<popup name="Tipp 1">Beachte die Einheiten. Die Fahrtzeit ist in Minuten [min] angegeben und die Geschwindigkeit in Stundenkilometer/Kilometer pro Stunde [km/h].</popup>
+
<popup name="Tipp 2">Wie lang ist die Zeit zwischen Minute 67 bis Minute 82? Rechne diese Differenz von Minuten [min] in Stunden [h] um.</popup>
+
<popup name="Tipp 3">In dem Zeitraum liegen 15 Minuten, die entsprechen 1/4 Stunde. Wenn man 15 Minuten, also eine Viertelstunde, mit einer Geschwindigkeit von 50 km/h fährt. Wie viel Strecke hat man dann zurückgelegt?</popup>
+
<popup name="Lösung">Von Minute 67 bis Minute 82 ist eine Viertelstunde vergangen, in der die Familie 12,5 km zurückgelegt hat.</popup> <br />
+
  
'''d)''' Wie viele Kilometer hat Peters Familie in den ersten 2 Stunden näherungsweise zurückgelegt?
+
<popup name="Lösung"> Die Öffnungszeiten sind die Nullstellen der Funktion <math>g</math>. Für die Gleichung <math> g(t) = 0,0625 t^3 - 3,25 t ^2 + 52,8125 t - 265,625 = 0 </math> gibt es drei Lösungen: <math> t_1 = 10</math>,  <math> t_2 = 17</math> und  <math> t_3 = 25</math>. Die zweite Ableitung <math> g '' (t) = 0,375 t - 6,5 </math> ist kleiner als 0 für <math> 10 \leq t \leq 17</math>. Also ist die Funktion  <math> g </math> zwischen diesen Nullstellen positiv. <br/> Da nur positive Werte für Besucherzahlen Sinn ergeben, muss der Zoo für <math> 10 \leq t \leq 17</math>, also zwischen 10:00 Uhr und 17:00 Uhr, geöffnet sein.</popup>
 +
}}
  
"Näherungsweise" bedeutet an dieser Stelle musst du nur die Phasen konstanter Geschwindigkeit in Betracht ziehen. Schreibe die Lösung in dein Heft.<br />
+
 
<popup name="Tipp">Wenn man die Beschleunigs- und Bremsphasen beiseite lässt, erhählt man fünf einzelne Abschnitte, die man wie in Aufgabe '''c)''' berechnen kann. (Zeit*Geschwindigkeit=Strecke)</popup>
+
==Forderaufgabe: Ausblick auf die Integralrechnung==
<popup name="Lösung"> Strecke AB (6 Minuten): 0,1 h * 30 km/h = 3 km  <br/> Strecke CD (20 Minuten): 0,333 h * 50 km/h = 16,666 km  <br/> Strecke EF (30 Minuten): 0,5 h * 100 km/h = 50 km  <br/> Strecke GH (15 Minuten): 0,25 h * 50 km/h = 12,5 km (siehe '''c)''')  <br/> Strecke IJ (35 Minuten): 0,583 h * 100 km/h = 58,33 km  <br/> '''Insgesamt also:''' 3 km + 16,66 km + 50 km + 12,5 km + 58,33 km = 140,5 (Rundungsfehler sind hier möglich!)</popup>
+
{{Aufgaben| 6 : Die Autofahrt|Familie Müller fährt zusammen in den Urlaub. Der Sohn Peter möchte gerne wissen, wie weit sie insgesamt gefahren sind. Dazu hat er die Geschwindigkeit des Autos zu bestimmten Zeitpunkten auf der Anzeige im Auto abgelesen und sich notiert. Die Geschwindigkeit stellt Peter vereinfacht mit einem Graphen, wie in Abbildung 6.1, dar. <br/>
 +
[[Datei:Geschwindigkeitsnotizen1.png|1000px|zentriert|thumb|Abb. 6.1: Geschwindigkeitsprofil einer Urlaubsfahrt]]<br />
 +
 
 +
 
 +
'''a)''' Wie viele Kilometer hat Peters Familie in den ersten 2 Stunden näherungsweise zurückgelegt?
 +
 
 +
"Näherungsweise" bedeutet: An dieser Stelle musst du nur die Phasen konstanter Geschwindigkeit in Betracht ziehen. Schreibe die Lösung in dein Heft.<br />
 +
<popup name="Tipp">Wenn man die Beschleunigs- und Bremsphasen beiseite lässt, erhählt man fünf einzelne Abschnitte, die man berechnen kann mit der Formel: <math> Zeit \cdot Geschwindigkeit = Strecke</math></popup>
 +
<popup name="Lösung"> Strecke AB (6 Minuten): <math>0,1 h \cdot 30 km/h = 3 km</math> <br/> Strecke CD (20 Minuten): <math>0,333 h \cdot 50 km/h = 16,666 km</math> <br/> Strecke EF (30 Minuten): <math>0,5 h \cdot 100 km/h = 50 km</math> <br/> Strecke GH (15 Minuten): <math>0,25 h \cdot 50 km/h = 12,5 km</math> <br/> Strecke IJ (35 Minuten): <math>0,583 h \cdot 100 km/h = 58,33 km</math> <br/> '''Insgesamt also:''' <math>3 km + 16,66 km + 50 km + 12,5 km + 58,33 km = 140,5 km</math> </popup>
 
<br />
 
<br />
'''e)''' Wir nehmen an, der abgebildete Graph beschreibt die Ableitung einer Funktion. Was gibt dann die Funktion an und wovon ist sie abhängig?  
+
 
 +
'''b)''' Berechne die durchschnittliche Geschwindigkeit, die Peters Familie in den ersten zwei Stunden gefahren ist.<br />
 +
<popup name="Lösung">Die durchschnittliche Geschwindigkeit ergibt sich durch die gefahrene Strecke dividiert durch die Zeitspanne (2h). Aus Aufgabenteil '''a)''' kennen wir die gefahrene Strecke näherungsweise:
 +
<br/>Also: '''140,5 km / 2 h = 70,25 km/h'''</popup>
 +
<br/>
 +
 
 +
'''c)''' Wir nehmen an, der abgebildete Graph beschreibt die Ableitung einer Funktion. Was gibt dann die Funktion an und wovon ist sie abhängig?  
  
 
Schreibe die Lösung in dein Heft.<br />
 
Schreibe die Lösung in dein Heft.<br />
<popup name="Tipp">Betrachte die vorherigen Aufgaben und ihre Ergebnisse noch einmal.</popup>
+
<popup name="Tipp">Betrachte die Aufgabe '''a)''' und ihre Ergebnisse noch einmal.</popup>
<popup name="Lösung">Wenn die Ableitung die Geschwindigkeit in Abhängigkeit von der Zeit angibt, dann gibt die Funktion die Strecke in Abhängigkeit von der Zeit an.</popup> <br />
+
<popup name="Lösung">Wenn die Ableitung die '''Geschwindigkeit in Abhängigkeit von der Zeit''' angibt, dann gibt die Funktion die '''Strecke in Abhängigkeit von der Zeit''' an.</popup> <br />
 +
<br/>
 +
 
 +
'''d)''' Wir nehmen wieder an, der abgebildete Graph stellt die Ableitung einer Funktion dar. Skizziere diese Funktion in dein Heft.
 +
<popup name="Tipp"> Wir wissen aus Aufgabenteil '''a)''', dass die Familie in bestimmten Zeitabständen gewisse Wege zurückgelegt hat und insgesamt nach 2 Stunden 140,5 km gefahren ist. </popup>
 +
<popup name="Lösung">Eine Skizze hat über das Streckenprofil der Autofahr hat diesen Verlauf in den ersten zwei Stunden: <br/>[[Datei:Autofahrt(Strecke).png|800px|zentriert|thumb|Abb. 6.2: Skizze über die gefahrene Strecke von Peters Familie.]]</popup>
 +
}}
  
'''f)''' Berechne die durchschnittliche Geschwindigkeit, die Peters Familie in den ersten zwei Stunden gefahren ist.<br />
+
[[Kategorie:Digitale Werkzeuge in der Schule|!]]
<popup name="Lösung">Die durchschnittliche Geschwindigkeit ergibt sich durch die gefahrene Strecke dividiert durch die Zeitspanne (2h). Aus Aufgabenteil '''d)''' kennen wir die gefahrene Strecke näherungsweise:
+
<br/>Also: '''140,5 km / 2 h = 70,25 km/h'''
+
<br/>''Auch hier kann dein Ergebnis abweichen, wenn du in '''d)''' ein anderes Ergebnis berechnet hast''</popup>}}
+

Aktuelle Version vom 28. Dezember 2018, 01:01 Uhr

Auf dieser Seite findest du Aufgaben, die dein Verständnis zum Sachkontext von Ableitungen vertiefen sollen. Du wiederholst, Ergebnisse im Sachzusammenhang zu interpretieren, Signalwörter in den Aufgabenstellungen zu erkennen und diese mit den entsprechenden rechnerischen Vorgehensweisen zu verknüpfen. Außerdem vertiefst du an verschiedenen Beispielen den Zusammenhang zwischen der Funktion und den einzelnen Ableitungen. Dies tust du vor allem mit Bezug auf die Einheiten der Funktionswerte.

Die Aufgaben 1-3 dienen als Einstieg und sind leichter zu lösen. In den Aufgaben 4-5 kannst du schwierigere Probleme lösen. Falls du dich schon sehr sicher fühlst, kannst du dich an die letzte Aufgabe begeben.


Inhaltsverzeichnis

Durchschnittliche Änderungsrate im Sachzusammenhang

Stift.gif   Aufgabe 1: Dieselpreise

Die Abbildung 1.1 zeigt die Entwicklung des Dieselpreises in Deutschland im Zeitraum vom 12.10.2018 (Tag 0) bis zum 18.10.2018 (Tag 6).

Abb. 1.1: Dieselpreisentwicklung

a) Berechne den durchschnittlichen Preisanstieg im Zeitraum vom 13.10.2018 bis zum 16.10.2018.
Hier kannst du deine Lösung eintragen und überprüfen, ob sie richtig ist.



b) Beurteile die Aussagekraft des in Teil a) ermittelten Durchschnittswertes und notiere dein Ergebnis im Heft.



Wiederholung wichtiger Signalwörter

Stift.gif   Aufgabe 2: Zuordnen

Der Graph der Funktion  f(t) beschreibt die Flugbahn eines Balls.  f(t) gibt die Höhe in Metern in Abhängigkeit von der Zeit  t an. Dabei beschreibt  t die Zeit in Sekunden.
Fülle den folgenden Lückentext aus:

Funktionswerte und Ergebnisse im Sachzusammenhang deuten

Stift.gif   Aufgabe 3: Silvesterkracher
Abb. 3.1: Höhe einer Feuerwerksrakete
Die Höhe einer gezündeten Feuerwerksrakete kann in den ersten fünf Sekunden nach dem Start annähernd durch die Funktion h(t)=7t^2 beschrieben werden (siehe Abbildung 3.1). Dabei wird die Zeit t nach dem Start in Sekunden und die Höhe h(t) in Metern angegeben.

a) Bestimme die folgenden Werte und trage sie unten in die Lücken ein.

1. h(2)


2. h(4)-h(1)


3. \frac{h(4)-h(1)}{4-1}


4. h'(3)


5. \frac{h(t)-h(4,5)}{t-4,5} für t → 4,5


6. h'(4,5)



b) Interpretiere alle Ergebnisse aus a) im Sachzusammenhang. Schreibe deine Überlegungen in dein Heft.

c) Wie groß ist die Beschleunigung des Feuerwerkskörpers drei Sekunden nach dem Start?

d) Erkläre, warum die oben angegebene Funktion h(t) nur in den ersten fünf Sekunden nach dem Start geeignet ist, um den Sachverhalt zu beschreiben. Schreibe die Erklärung in dein Heft.

Einheiten der Ableitungsfunktion

Stift.gif   Aufgabe 4: Aussagen der Ableitungsfunktion und Änderung der Einheiten


a) Eine Funktion f(t) beschreibt die zurückgelegte Strecke eines Fahrradfahrers in Metern in Abhängigkeit von der Zeit t in Sekunden. Vervollständige die folgenden Aussagen.

b) In einem Wald werden nach einer Rodung neue Bäume gepflanzt. Der Förster misst die durchschnittliche Höhe der Bäume in Metern monatlich aus, notiert seine Messwerte und modelliert den Sachverhalt in einer Funktion f(x). Vervollständige die folgenden Aussagen.


c) Zum Herbst wird das Wasser im städtischen Freibad aus dem Becken abgelassen. Eine Funktion f'(x) ist die Ableitungsfunktion von f(x) und beschreibt die Abflussrate in Kubikmetern pro Stunde, wobei x die Zeit in Stunden angibt. Vervollständige die folgende Aussage.




Funktionsuntersuchung

Stift.gif   Aufgabe 5: Ein Tag im Zoo


Ein Zoo ist bekanntermaßen in den Sommerferien am besten besucht. Die Besucherzahlen (in 100 Personen) eines bestimmten Zoos können durch die Funktion
b(t) = - 0,05 t^3 + 1,8 t^2 - 19,2 t + 62,5 für 10 < t \leq 19,5
näherungsweise beschrieben werden. Dabei gibt t die Uhrzeit in Stunden an.

Abb. 5.1: Besucherzahl eines Zoos

Rechne die folgenden Aufgaben im Heft und vergleiche mit den angegebenen Lösungsvorschlägen.

a) Zu welcher Uhrzeit befinden sich am meisten Besucher in dem Zoo? Und wie viele sind es?


b) Begründe den so gewählten Definitionsbereich.


c) Wann ist die Besucherzahl am geringsten?


d) Zu welcher Uhrzeit ist der Andrang in den Zoo am größten?


e) Im Winter können die Besucherzahlen für diesen Zoo durch die Funktion  g(t) = 0,0625 t^3 - 3,25 t ^2 + 52,8125 t - 265,625 beschrieben werden. Im folgenden ist der Graph der Funktion gezeichnet:

Abb. 5.2: Besuchszahlen im Winter

Wie lauten die Öffnungszeiten im Winter? Argumentiere im Sachzusammenhang und mit der zweiten Ableitung.


Forderaufgabe: Ausblick auf die Integralrechnung

Stift.gif   Aufgabe 6 : Die Autofahrt

Familie Müller fährt zusammen in den Urlaub. Der Sohn Peter möchte gerne wissen, wie weit sie insgesamt gefahren sind. Dazu hat er die Geschwindigkeit des Autos zu bestimmten Zeitpunkten auf der Anzeige im Auto abgelesen und sich notiert. Die Geschwindigkeit stellt Peter vereinfacht mit einem Graphen, wie in Abbildung 6.1, dar.

Abb. 6.1: Geschwindigkeitsprofil einer Urlaubsfahrt


a) Wie viele Kilometer hat Peters Familie in den ersten 2 Stunden näherungsweise zurückgelegt?

"Näherungsweise" bedeutet: An dieser Stelle musst du nur die Phasen konstanter Geschwindigkeit in Betracht ziehen. Schreibe die Lösung in dein Heft.


b) Berechne die durchschnittliche Geschwindigkeit, die Peters Familie in den ersten zwei Stunden gefahren ist.


c) Wir nehmen an, der abgebildete Graph beschreibt die Ableitung einer Funktion. Was gibt dann die Funktion an und wovon ist sie abhängig?

Schreibe die Lösung in dein Heft.



d) Wir nehmen wieder an, der abgebildete Graph stellt die Ableitung einer Funktion dar. Skizziere diese Funktion in dein Heft.