Achtung:

Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.

Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.


Gerne kannst Du natürlich weiterarbeiten

im neuen Projektwiki (projekte.zum.de).

Von der mittleren zur lokalen Änderungsrate: Unterschied zwischen den Versionen

Aus Projektwiki - ein Wiki mit Schülern für Schüler.
Wechseln zu: Navigation, Suche
(Kategorie ergänzt)
 
(20 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 12: Zeile 12:
 
* In '''Aufgabe 1''' kannst du die '''Berechnung der mittlere Änderungsrate''' anhand von Rechenbeispielen ohne Sachzusammenhang wiederholen. Diese Aufgabe ist eine Förderaufgabe.
 
* In '''Aufgabe 1''' kannst du die '''Berechnung der mittlere Änderungsrate''' anhand von Rechenbeispielen ohne Sachzusammenhang wiederholen. Diese Aufgabe ist eine Förderaufgabe.
  
*  In '''Aufgabe 2''' übst du die '''Berechnung der mittlere Änderungsrate im Sachkontext'''. Diese Aufgabe ist eine Förderaufgabe. Wenn du schon sicher bei der Berechnung mittleren Änderungsraten bist, kannst du Aufgabe 1 und 2 auch überspringen.
+
*  In '''Aufgabe 2''' übst du die '''Berechnung der mittleren Änderungsrate im Sachkontext'''. Diese Aufgabe ist eine Förderaufgabe. Wenn du schon sicher bei der Berechnung von mittleren Änderungsraten bist, kannst du Aufgabe 1 und 2 auch überspringen.
  
* In '''Aufgabe 3''' beschäftigst du dich mit der '''Unterscheidung der mittleren und lokale Änderungsrate'''. In Teilaufgaben a) und b) geht es darum, festzustellen, wie sich die beiden Änderungsraten unterscheiden. Dies ist eine Förderaufgabe.
+
* In '''Aufgabe 3''' beschäftigst du dich mit der '''Unterscheidung der mittleren und lokale Änderungsrate'''. In den Teilaufgaben a) und b) geht es darum, festzustellen, wie sich die beiden Änderungsraten unterscheiden. Dies ist eine Förderaufgabe.
  
 
*In '''Aufgabe 4''' musst du im Sachzusammenhang unterscheiden, welche der beiden Änderungsraten berechnet werden soll. Diese Aufgabe ist eine Förderaufgabe.
 
*In '''Aufgabe 4''' musst du im Sachzusammenhang unterscheiden, welche der beiden Änderungsraten berechnet werden soll. Diese Aufgabe ist eine Förderaufgabe.
  
* Den '''Zusammenhang von mittlerer und lokaler Änderungsrate''' erarbeitest du in '''Aufgabe 5'''.Dies ist eine Förderaufgabe.  
+
* Den '''Zusammenhang von mittlerer und lokaler Änderungsrate''' erarbeitest du in '''Aufgabe 5'''. Dies ist eine Förderaufgabe.  
  
 
* In '''Aufgabe 6''' geht es um die '''geometrischen Zusammenhänge'''. Dies ist eine Forderaufgabe.
 
* In '''Aufgabe 6''' geht es um die '''geometrischen Zusammenhänge'''. Dies ist eine Forderaufgabe.
Zeile 37: Zeile 37:
 
{{Merke|'''Die mittlere Änderungsrate und wie man sie berechnet'''
 
{{Merke|'''Die mittlere Änderungsrate und wie man sie berechnet'''
  
Die '''mittlere Änderungsrate''' einer Funktion <math>f</math> in einem Intervall [x<sub>0</sub>, x<sub>1</sub>] gibt die durchschnittliche Veränderung der Funktionswerte von f in diesem Bereich an. Anders gesagt gibt die mittlere Änderungsrate die Steigung der Sekanten an, die die Punkte (x<sub>0</sub>, f(x<sub>0</sub>)) und (x<sub>1</sub>, f(x<sub>1</sub>)) verbindet.
+
 
Die mittlere Änderungsrate in einem Intervall [x<sub>0</sub>, x<sub>1</sub>] berechnet man so:
+
Die '''mittlere Änderungsrate''' einer Funktion <math>f</math> in einem Intervall <math>[x_0, x_1]</math> gibt die durchschnittliche Veränderung der Funktionswerte von <math>f</math> in diesem Bereich an. Anders gesagt gibt die mittlere Änderungsrate die Steigung der '''Sekanten''' an, die die Punkte <math>(x_0, f(x_0))</math> und <math>(x_1, f(x_1)))</math> verbindet.
 +
 
 +
 
 +
Die mittlere Änderungsrate in einem Intervall <math>[x_0, x_1]</math> berechnet man so:
 
<math>\frac {f(x_1)-f(x_0)} {x_1-x_0}</math>.
 
<math>\frac {f(x_1)-f(x_0)} {x_1-x_0}</math>.
Der Ausdruck <math>\frac {f(x_1)-f(x_0)} {x_1-x_0}</math> wird auch Differenzenquotient genannt. }}
+
 
 +
Der Ausdruck <math>\frac {f(x_1)-f(x_0)} {x_1-x_0}</math> wird auch '''Differenzenquotient''' genannt.}}
 +
 
  
 
{{Merke|
 
{{Merke|
 
'''Die lokale Änderungsrate und wie man sie berechnet'''
 
'''Die lokale Änderungsrate und wie man sie berechnet'''
 +
  
 
Die '''lokale Änderungsrate''' einer Funktion <math>f</math> gibt die Steigung in einem Punkt an. Anders gesagt, gibt die lokale Änderungsrate die Steigung der '''Tangente''' an der Stelle <math>x</math> an. Die Steigung der Tangente entspricht der '''Ableitung''' der Funktion <math>f</math>. Somit lässt sich die lokale Änderungsrate mit Hilfe der Ablteitung <math>f'(x)</math> berechnen.
 
Die '''lokale Änderungsrate''' einer Funktion <math>f</math> gibt die Steigung in einem Punkt an. Anders gesagt, gibt die lokale Änderungsrate die Steigung der '''Tangente''' an der Stelle <math>x</math> an. Die Steigung der Tangente entspricht der '''Ableitung''' der Funktion <math>f</math>. Somit lässt sich die lokale Änderungsrate mit Hilfe der Ablteitung <math>f'(x)</math> berechnen.
 
Eine weitere Methode zur Bestimmung der lokalen Änderungsrate ist, den Grenzwert des Differenzenquotienten zu bilden.  
 
Eine weitere Methode zur Bestimmung der lokalen Änderungsrate ist, den Grenzwert des Differenzenquotienten zu bilden.  
  
Der Grenzwert '''<math>\overrightarrow{h \rightarrow0}\frac{f(x+h)-f(x)} {h}</math>''' heißt '''Differenzialquotient'''.  
+
Der Grenzwert von '''<math>\frac{f(x+h)-f(x)} {h}</math>''' für h gegen 0 heißt '''Differenzialquotient'''.}}
 +
 
 +
 
 +
{{Merke|'''Sekante'''
 +
 
 +
 
 +
Eine Sekante ist eine Gerade zwischen zwei Punkten. Ihre Steigung heißt Sekantensteigung und gibt die mittlere Änderungsrate zwischen diesen beiden Punkten an. [[File:Afgeleide.svg|250px|links|rahmenlos|Sekante durch zwei Punkte eines Funktionsgraphen]]}}
 +
 
  
<iframe width="560" height="315" src="https://www.youtube.com/embed/6HDhATXNCGU" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>.}}
+
{{Merke|'''Tangente'''
  
{{Merke|'''Sekante''': Eine Sekante ist eine Gerade zwischen zwei Punkten. Ihre Steigung heißt Sekantensteigung und gibt die mittlere Änderungsrate zwischen diesen beiden Punkten an. [[File:Afgeleide.svg|250px|links|rahmenlos|Sekante durch zwei Punkte eines Funktionsgraphen]]}}
 
  
{{Merke|'''Tangente''': Eine Tangente ist eine Gerade, die eine Kurve in einem bestimmten Punkt berührt. Dort haben die Kurve und die Tangente dieselbe Steigung. Diese Steigung entspricht der Ableitung der Funktion in diesem Punkt.
+
Eine Tangente ist eine Gerade, die eine Kurve in einem bestimmten Punkt berührt. Dort haben die Kurve und die Tangente dieselbe Steigung. Diese Steigung entspricht der Ableitung der Funktion in diesem Punkt.
  
 
[[File:Tangente2.svg|250px|links|rahmenlos|Graph einer Funktion mit eingezeichneter Tangente an einem Punkt. Diese Abbildung zeigt, dass die Tangente mehr als einen gemeinsamen Punkt mit dem Graphen haben kann. Graph der Funktion Tangente]]}}
 
[[File:Tangente2.svg|250px|links|rahmenlos|Graph einer Funktion mit eingezeichneter Tangente an einem Punkt. Diese Abbildung zeigt, dass die Tangente mehr als einen gemeinsamen Punkt mit dem Graphen haben kann. Graph der Funktion Tangente]]}}
Zeile 78: Zeile 90:
  
 
<popup name="Tipp ">
 
<popup name="Tipp ">
Die mittlere Änderungsrate in einem Intervall [x<sub>0</sub>, x<sub>1</sub>] berechnet man so:
+
Wie man die mittlere Änderungsrate in einem Intervall [x<sub>0</sub>, x<sub>1</sub>] berechnet, schaue einmal oben im Merkkästchen '''Die mittlere Änderungsrate und wie man sie berechnet''' nach.</popup>
<math>\frac {f(x_1)-f(x_0)} {x_1-x_0}</math>.</popup>
+
 
<popup name="Tipp zu h(x)">
 
<popup name="Tipp zu h(x)">
 
Achte auf die Vorzeichen!</popup>
 
Achte auf die Vorzeichen!</popup>
  
<popup name="Lösung">1. Um die mittlere Änderungsrate von f im Intervall <math>[2,5]</math> zu berechen, benötigst du die Funktionswerte von f an den Intervallgrenzen:<math>f(2)=4*2+2=10 </math> und <math> f(5)=4*5+2=22</math>  
+
<popup name="Lösung">'''a)''' Um die mittlere Änderungsrate von f im Intervall <math>[2,5]</math> zu berechen, benötigst du die Funktionswerte von f an den Intervallgrenzen:<math>f(2)=4\cdot2+2=10 </math> und <math> f(5)=4\cdot5+2=22</math>  
  
 
Die mittlere Änderungsrate von f berechnet man so: <math>\frac {f(5)-f(2)} {5-2}=\frac {22-10} {5-2}= \frac{12} {3}= 4</math>
 
Die mittlere Änderungsrate von f berechnet man so: <math>\frac {f(5)-f(2)} {5-2}=\frac {22-10} {5-2}= \frac{12} {3}= 4</math>
Zeile 90: Zeile 101:
  
  
2. <math>g(2)=2^2=4 </math> und <math> g(7)=7^2=49 </math>  
+
b) <math>g(2)=2^2=4 </math> und <math> g(7)=7^2=49 </math>  
  
 
Berechnung der mittleren Änderungsrate: <math>\frac{g(7)-g(2)} {7-2}=\frac{49-4} {7-2}= \frac{45} {5}= 9</math>
 
Berechnung der mittleren Änderungsrate: <math>\frac{g(7)-g(2)} {7-2}=\frac{49-4} {7-2}= \frac{45} {5}= 9</math>
  
  
3. <math>h(-2)=(-2)^3-2=(-10) </math> und <math> h(1)=1^3-2=(-1) </math>  
+
c) <math>h(-2)=(-2)^3-2=(-10) </math> und <math> h(1)=1^3-2=(-1) </math>  
  
 
Berechnung der mittleren Änderungsrate:<math> \frac{h(1)- h(-2)} {1-(-2)}= \frac{(-1)-(-10)} {1-(-2)}= \frac{9} {3}= 3</math> </popup>}}
 
Berechnung der mittleren Änderungsrate:<math> \frac{h(1)- h(-2)} {1-(-2)}= \frac{(-1)-(-10)} {1-(-2)}= \frac{9} {3}= 3</math> </popup>}}
Zeile 118: Zeile 129:
  
  
<popup name="Tipp "> In dieser Aufgabe wird die mittlere Änderungsrate im Intervall <math> [2010, 2018]</math> gesucht. Wenn du nicht mehr weißt, wie du diese berechnen kannst, lies in den Tipps zu Aufgabe 1 nach. </popup>
+
<popup name="Tipp "> In dieser Aufgabe wird die mittlere Änderungsrate im Intervall <math> [2010, 2018]</math> gesucht. Wenn du nicht mehr weißt, wie du diese berechnen kannst, lies im Merkkästchen '''Die mittlere Änderungsrate und wie man sie berechnet''' nach. </popup>
  
 
<popup name="Lösung"> Um herauszufinden, wie viele Mitglieder seit 2010 in deinem Verein durchschnittlich pro Jahr hinzugekommen sind, musst du die mittlere Änderungsrate im Intervall [2010, 2018] bestimmen. Wir können sagen, dass f(x) die Funktion ist, die jeder Jahreszahl ab 2010 die Anzahl der Mitglieder in diesem Jahr zuordnet. Dann ist f(2010)=210 und f(2018)=418. Mit diesen Werten kannst du jetzt die mittlere Änderungsrate bestimmen:
 
<popup name="Lösung"> Um herauszufinden, wie viele Mitglieder seit 2010 in deinem Verein durchschnittlich pro Jahr hinzugekommen sind, musst du die mittlere Änderungsrate im Intervall [2010, 2018] bestimmen. Wir können sagen, dass f(x) die Funktion ist, die jeder Jahreszahl ab 2010 die Anzahl der Mitglieder in diesem Jahr zuordnet. Dann ist f(2010)=210 und f(2018)=418. Mit diesen Werten kannst du jetzt die mittlere Änderungsrate bestimmen:
Zeile 129: Zeile 140:
  
  
<popup name="Tipp"> Vergleiche die mittlere Änderungsrate in den Jahren vor der Wahl des neuen Vorstands (2010-2016) und nach der Wahl des neuen Vorstands (2016-2018). Wenn du nicht mehr weißt, wie du die mittlere Änderungsrate berechnen kannst, schaue dir die Tipps zu Aufgabe 1 und 2a) nochmal an. </popup>
+
<popup name="Tipp"> Vergleiche die mittlere Änderungsrate in den Jahren vor der Wahl des neuen Vorstands (2010-2016) und nach der Wahl des neuen Vorstands (2016-2018). Wenn du nicht mehr weißt, wie du die mittlere Änderungsrate berechnen kannst, schaue im Merkkästchen '''Die mittlere Änderungsrate und wie man sie berechnet''' nach. </popup>
  
 
<popup name="Lösung">
 
<popup name="Lösung">
Zeile 158: Zeile 169:
  
 
'''b)''' Fertige in deinem Heft eine Tabelle zur mittleren und lokalen Änderungsrate mit den Karten aus Teilaufgabe a) an. Stelle die zueinander passenden Begriffe gegenüber, zum Beispiel Sekante und Tangente.
 
'''b)''' Fertige in deinem Heft eine Tabelle zur mittleren und lokalen Änderungsrate mit den Karten aus Teilaufgabe a) an. Stelle die zueinander passenden Begriffe gegenüber, zum Beispiel Sekante und Tangente.
 +
 +
<popup name="Tipp">Hier sollst du Begriffspaare bilden. Das Paar soll aus einem Begriff zur mittleren Änderungsrate und einem Begriff zur lokalen Änderungsrate bestehen. Die Begriffe sollen inhaltlich zueinander passen, wie zum Beispiel das Begriffspaar Sekante (mittlere Änderungsrate) und Tangente (lokale Änderungsrate).</popup>
 +
 
<popup name="Lösung"
 
<popup name="Lösung"
 
>{| class="wikitable"
 
>{| class="wikitable"
Zeile 185: Zeile 199:
 
'''a)''' Berechne den zurückgelegten Weg nach 3 und 5 Sekunden.
 
'''a)''' Berechne den zurückgelegten Weg nach 3 und 5 Sekunden.
  
<popup name="Tipp">Gesucht wird die momentane/lokale Geschwindigkeit.</popup>
+
<popup name="Lösung">Nach 3 Sekunden hat Tim einen Weg von 21 Metern zurückgelegt, denn <math>s(3)=10\cdot3-3^2=30-9=21</math>. Nach 5 Sekunden hat er 25 Meter zurückgelegt, denn es gilt <math>s(5)=10 \cdot 5-5^2=50-25=25</math>.</popup>
  
<popup name="Tipp">Zur Berechnung der momentanen/lokalen Geschwindigkeit musst du die Ableitung der Funktion bilden.</popup>
 
  
 
'''b)''' Berechne die Geschwindigkeit, die Tim nach 3 Sekunden bzw. nach 5 Sekunden mit seinem Fahrrad erreicht hat.
 
'''b)''' Berechne die Geschwindigkeit, die Tim nach 3 Sekunden bzw. nach 5 Sekunden mit seinem Fahrrad erreicht hat.
  
'''c)''' Warum hat die oben genannte Formel im vorliegenden Sachzusammenhang für <math>t=6</math> keinen Sinn?
+
<popup name="Tipp">Gesucht wird die momentane/lokale Geschwindigkeit.</popup>
  
<iframe src="https://learningapps.org/watch?v=pq5ma4hmn18" style="border:0px;width:100%;height:300px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
+
<popup name="Tipp">Zur Berechnung der momentanen/lokalen Geschwindigkeit musst du die Ableitung der Funktion bilden.</popup>
  
<popup name="Lösung a)">Nach 3 Sekunden hat Tim einen Weg von 21 Metern zurückgelegt, denn <math>s(3)=10*3-3^2=30-9=21</math>. Nach 5 Sekunden hat er 25 Meter zurückgelegt, denn es gilt <math>s(5)=10*5-5^2=50-25=25</math>.</popup>
+
<popup name="Lösung">Die lokale Änderungsrate <math>s'(t)=10-2t</math> entspricht der Geschwindigkeit. <math>s'(3)=10-2\cdot3=10-6=4</math> und <math>s'(5)=10-2\cdot5=10-10=0</math>.</popup>
  
<popup name="Lösung b)">Die lokale Änderungsrate <math>s'(t)=10-2t</math> entspricht der Geschwindigkeit. <math>s'(3)=10-2*3=10-6=4</math> und <math>s'(5)=10-2*5=10-10=0</math>.</popup>
+
'''c)''' Warum hat die oben genannte Funktion im vorliegenden Sachzusammenhang für <math>t=6</math> keinen Sinn?
  
<popup name="Lösung c)">Die angegebene Formel kann nicht für t=6 gelten, da die gegebene Funktion nur für den Definitionsbereich <math>t\in [0;5]</math> gilt. In der Realität bedeutet es, dass Tim nach 5 Sekunden schon stehen geblieben ist.</popup>
+
<popup name="Lösung">Die angegebene Funktion kann nicht für t=6 gelten, da die gegebene Funktion nur für den Definitionsbereich <math>t\in [0;5]</math> gilt. In der Realität bedeutet es, dass Tim nach 5 Sekunden an der Ampel stehen geblieben ist. Somit ist der Weg, der durch die genannte Funktion beschrieben wird, zu Ende.</popup>
 
}}
 
}}
 
  
 
==Zusammenhang von mittlerer und lokaler Änderungsrate==
 
==Zusammenhang von mittlerer und lokaler Änderungsrate==
Zeile 207: Zeile 219:
 
{{Aufgaben|5: Zusammenhang von mittleren und lokalen Änderungsrate|  
 
{{Aufgaben|5: Zusammenhang von mittleren und lokalen Änderungsrate|  
  
Die Funktion <math>f(x) = -1/2*(x-1)^2+3</math> ist in der folgenden Abbildung dargestellt:
+
Die Funktion <math>f(x) = -1/2\cdot(x-1)^2+3</math> ist in der folgenden Abbildung dargestellt:
  
 
[[Datei:Funktionsgraph.PNG|350px|zentriert|rahmenlos|Bild des Funktion f]]
 
[[Datei:Funktionsgraph.PNG|350px|zentriert|rahmenlos|Bild des Funktion f]]
Zeile 227: Zeile 239:
 
'''c)''' Was bedeutet das Ergebnis aus 1) für die durchschnittliche Änderungsrate und was bedeutet es für die momentane Änderungsrate im Punkt <math>P = (2|2,5)</math>? Wie hängen diese beiden Begriffe miteinander zusammen? Löse dazu den Lückentext. Dabei beziehen sich die Lücken immer auf <math>\frac {f(2)-f(x)} {2-x}</math>.
 
'''c)''' Was bedeutet das Ergebnis aus 1) für die durchschnittliche Änderungsrate und was bedeutet es für die momentane Änderungsrate im Punkt <math>P = (2|2,5)</math>? Wie hängen diese beiden Begriffe miteinander zusammen? Löse dazu den Lückentext. Dabei beziehen sich die Lücken immer auf <math>\frac {f(2)-f(x)} {2-x}</math>.
  
<iframe src="https://learningapps.org/watch?v=pdbfw1aq318" style="border:0px;width:100%;height:300px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
+
<iframe src="https://learningapps.org/watch?v=pdbfw1aq318" style="border:0px;width:100%;height:250px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
  
<popup name="Tipp">Der Grenzwert des Differenzenquotienten ist der Differentialquotient <math> \lim_{x \to 2} \frac{f(2)-f(x)} {2-x}</math></popup>
+
<popup name="Tipp">Der Grenzwert des Differenzenquotienten ist der Differentialquotient <math> \frac{f(2)-f(x)} {2-x}</math></popup> für x gegen 2.
  
<popup name="Lösung zu 3)"> Wenn der Differenzenquotient einen bestimmten Wert, z.B. -0,95 bei x=1,9, annimmt, entspricht der Wert der mittleren Änderungsrate der Funktion im Intervall [1,9;2]. Wenn man kleinere Intervalle betrachtet, nähert sich der Differenzenquotient -1 an. Das bedeutet, in der Umgebung von x=2 liegt die Änderungsrate nahe bei -1. Da die Änderungsrate in einem Punkt von dem Differenzialquotient angegeben wird, entspricht der der Grenzwert des Differenzenquotienten →<math>\frac{f(2)-f(x)} {2-x}</math> dem Differenzialquotienten. Letzterer gibt die lokale Änderungsrate im Punkt <math>P = (2|2,5)</math> an.</popup>}}
+
<popup name="Lösung"> Wenn der Differenzenquotient einen bestimmten Wert, z.B. -0,95 bei x=1,9, annimmt, entspricht der Wert der mittleren Änderungsrate der Funktion im Intervall [1,9;2]. Wenn man kleinere Intervalle betrachtet, nähert sich der Differenzenquotient -1 an. Das bedeutet, in der Umgebung von x=2 liegt die Änderungsrate nahe bei -1. Da die Änderungsrate in einem Punkt von dem Differenzialquotient angegeben wird, entspricht der der Grenzwert des Differenzenquotienten →<math>\frac{f(2)-f(x)} {2-x}</math> dem Differenzialquotienten. Letzterer gibt die lokale Änderungsrate im Punkt <math>P = (2|2,5)</math> an.</popup>}}
  
 
==Geometrischer Zusammenhang von mittlerer und lokaler Änderungsrate==
 
==Geometrischer Zusammenhang von mittlerer und lokaler Änderungsrate==
Zeile 249: Zeile 261:
 
'''b)''' Fülle nun den folgenden Lückentext aus.
 
'''b)''' Fülle nun den folgenden Lückentext aus.
  
<iframe src="https://learningapps.org/watch?v=pfj78n0nc18" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
+
<iframe src="https://learningapps.org/watch?v=pfj78n0nc18" style="border:0px;width:100%;height:400px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
  
 
<popup name="Tipp">Verschieben den "x<sub>1</sub>-x<sub>0</sub>"-Schieberegler in der oberen Darstellung und lies die gesuchten Werte in der Formel zum Differenzenquotienten ab.</popup>
 
<popup name="Tipp">Verschieben den "x<sub>1</sub>-x<sub>0</sub>"-Schieberegler in der oberen Darstellung und lies die gesuchten Werte in der Formel zum Differenzenquotienten ab.</popup>
Zeile 270: Zeile 282:
  
 
7)0,8</popup>}}
 
7)0,8</popup>}}
 +
 +
[[Kategorie:Digitale Werkzeuge in der Schule|!]]

Aktuelle Version vom 28. Dezember 2018, 00:59 Uhr


Dieser Lernpfad beschäftigt sich mit der mittleren und lokalen Änderungsrate.

  • In Aufgabe 1 kannst du die Berechnung der mittlere Änderungsrate anhand von Rechenbeispielen ohne Sachzusammenhang wiederholen. Diese Aufgabe ist eine Förderaufgabe.
  • In Aufgabe 2 übst du die Berechnung der mittleren Änderungsrate im Sachkontext. Diese Aufgabe ist eine Förderaufgabe. Wenn du schon sicher bei der Berechnung von mittleren Änderungsraten bist, kannst du Aufgabe 1 und 2 auch überspringen.
  • In Aufgabe 3 beschäftigst du dich mit der Unterscheidung der mittleren und lokale Änderungsrate. In den Teilaufgaben a) und b) geht es darum, festzustellen, wie sich die beiden Änderungsraten unterscheiden. Dies ist eine Förderaufgabe.
  • In Aufgabe 4 musst du im Sachzusammenhang unterscheiden, welche der beiden Änderungsraten berechnet werden soll. Diese Aufgabe ist eine Förderaufgabe.
  • Den Zusammenhang von mittlerer und lokaler Änderungsrate erarbeitest du in Aufgabe 5. Dies ist eine Förderaufgabe.
  • In Aufgabe 6 geht es um die geometrischen Zusammenhänge. Dies ist eine Forderaufgabe.

Viel Spaß beim Bearbeiten! :)


Inhaltsverzeichnis


Die wichtigsten Begriffe dieses Kapitels

Bevor du mit den Aufgaben beginnst, sind hier schonmal die wichtigsten Begriffe dieses Kapitels in Merkkästchen erklärt. Wenn du dir während der Bearbeitung der einzelnen Aufgaben unsicher bist, kannst du sie dir immer wieder anschauen, um dich zu erinnern. Falls du schon sicher im Umgang mit den folgenden Begriffen bist, kannst du sie zu Anfang auch einfach überlesen und direkt mit den Aufgaben beginnen.


Nuvola apps kig.png   Merke

Die mittlere Änderungsrate und wie man sie berechnet


Die mittlere Änderungsrate einer Funktion f in einem Intervall [x_0, x_1] gibt die durchschnittliche Veränderung der Funktionswerte von f in diesem Bereich an. Anders gesagt gibt die mittlere Änderungsrate die Steigung der Sekanten an, die die Punkte (x_0, f(x_0)) und (x_1, f(x_1))) verbindet.


Die mittlere Änderungsrate in einem Intervall [x_0, x_1] berechnet man so: \frac {f(x_1)-f(x_0)} {x_1-x_0}.

Der Ausdruck \frac {f(x_1)-f(x_0)} {x_1-x_0} wird auch Differenzenquotient genannt.


Nuvola apps kig.png   Merke

Die lokale Änderungsrate und wie man sie berechnet


Die lokale Änderungsrate einer Funktion f gibt die Steigung in einem Punkt an. Anders gesagt, gibt die lokale Änderungsrate die Steigung der Tangente an der Stelle x an. Die Steigung der Tangente entspricht der Ableitung der Funktion f. Somit lässt sich die lokale Änderungsrate mit Hilfe der Ablteitung f'(x) berechnen. Eine weitere Methode zur Bestimmung der lokalen Änderungsrate ist, den Grenzwert des Differenzenquotienten zu bilden.

Der Grenzwert von \frac{f(x+h)-f(x)} {h} für h gegen 0 heißt Differenzialquotient.


Nuvola apps kig.png   Merke

Sekante


Eine Sekante ist eine Gerade zwischen zwei Punkten. Ihre Steigung heißt Sekantensteigung und gibt die mittlere Änderungsrate zwischen diesen beiden Punkten an.
Sekante durch zwei Punkte eines Funktionsgraphen


Nuvola apps kig.png   Merke

Tangente


Eine Tangente ist eine Gerade, die eine Kurve in einem bestimmten Punkt berührt. Dort haben die Kurve und die Tangente dieselbe Steigung. Diese Steigung entspricht der Ableitung der Funktion in diesem Punkt.

Graph einer Funktion mit eingezeichneter Tangente an einem Punkt. Diese Abbildung zeigt, dass die Tangente mehr als einen gemeinsamen Punkt mit dem Graphen haben kann. Graph der Funktion Tangente


Berechnung der mittleren Änderungsrate

Stift.gif   Aufgabe 1: Berechnung der mittleren Änderungsrate


Berechne jeweils die durchschnittliche Änderungsrate der Funktionen f, g und h in dem angegebenen Intervall auf einem separaten Blatt Papier. Prüfe im Anschluss die von dir errechneten Werte, indem du sie in die dafür vorgesehenen Kästchen unter der Aufgabe eingibst.


a)f(x)=4x+2 im Intervall [2,5]

b)g(x)=x^2 im Intervall [2,7]

c)h(x)=x^3-2 im Intervall [-2,1]


Berechnung der mittleren Änderungsrate im Sachkontext

Stift.gif   Aufgabe 2: Berechnung der mittleren Änderungsrate im Sachkontext


Dein Sportverein feiert dieses Jahr seinen 25. Geburtstag. Zu diesem Anlass wird eine Tabelle mit den Mitgliederzahlen der letzten Jahre veröffentlicht (leider gab es vor dem Jahr 2010 keine Statistik über die Anzahl der Mitglieder):

Diwerspng.PNG




Leider ist der Vorstand wegen der Vorbereitung der Jubiläumsfeier sehr beschäftigt und bittet dich, ihm bei der Beantwortung einiger Fragen zu helfen. Du kannst diese zunächst am besten auf einem separaten Blatt Papier lösen und sie anschließend mit den gegebenen Lösungen vergleichen.

a) Wie viele Mitglieder sind seit 2010 im Durchschnitt pro Jahr in deinem Verein hinzugekommen?


b) Der aktuelle Vorstand arbeitet seit 2016 zusammen. Sein Ziel war eine Steigerung der Mitgliedszahlen. Diese sollte im Mittel größer sein als der durchschnittliche Mitgliederzuwachs in den Jahren davor (also von Beginn der Mitgliedererfassung bis zur Wahl des neuen Vorstands 2016). Ist es Ihnen gelungen ihr Ziel zu erreichen?



Unterscheidung der Änderungsraten

Stift.gif   Aufgabe 3: Unterscheidung der mittleren und lokalen Änderungsrate

a) Ordne die Karten jeweils richtig zu, indem ihr sie entweder zur mittleren oder lokalen Änderungsrate zieht.


b) Fertige in deinem Heft eine Tabelle zur mittleren und lokalen Änderungsrate mit den Karten aus Teilaufgabe a) an. Stelle die zueinander passenden Begriffe gegenüber, zum Beispiel Sekante und Tangente.

Änderungsraten im Sachzusammenhang

Stift.gif   Aufgabe 4: Änderungsraten im Sachzusammenhang


Tim fährt mit dem Fahrrad zur Schule und muss an einer roten Ampel abbremsen. Für den in der Zeit t (in Sekunden) zurückgelegten Weg s(t) (in Metern) gilt:

s(t)=10t-t^2 für t\in [0;5]

a) Berechne den zurückgelegten Weg nach 3 und 5 Sekunden.


b) Berechne die Geschwindigkeit, die Tim nach 3 Sekunden bzw. nach 5 Sekunden mit seinem Fahrrad erreicht hat.

c) Warum hat die oben genannte Funktion im vorliegenden Sachzusammenhang für t=6 keinen Sinn?

Zusammenhang von mittlerer und lokaler Änderungsrate

Stift.gif   Aufgabe 5: Zusammenhang von mittleren und lokalen Änderungsrate


Die Funktion f(x) = -1/2\cdot(x-1)^2+3 ist in der folgenden Abbildung dargestellt:

Bild des Funktion f

In der folgenden Tabelle siehst du einige Funktionswerte der Funktion f aufgelistet. Außerdem wurden die Differenzenquotienten vom Punkt P = (2|2,5) mit Punkten in der Umgebung ausgerechnet.

Tabelle zu x-, y-Werten und dem Differenzenquotienten zu der gegebenen Funktion f

a) Beschreibe, was mit dem Differenzenquotient passiert, wenn sich die x-Werte 2 annähern.

b) Erkläre, warum in der letzten Zeile unter "Differenzenquotient" ein "?" eingetragen ist.

c) Was bedeutet das Ergebnis aus 1) für die durchschnittliche Änderungsrate und was bedeutet es für die momentane Änderungsrate im Punkt P = (2|2,5)? Wie hängen diese beiden Begriffe miteinander zusammen? Löse dazu den Lückentext. Dabei beziehen sich die Lücken immer auf \frac {f(2)-f(x)} {2-x}.

für x gegen 2.

Geometrischer Zusammenhang von mittlerer und lokaler Änderungsrate

Stift.gif   Aufgabe 6: Geometrischer Zusammenhang von mittleren und lokalen Änderungsrate (Forder-Aufgabe)


Im folgenden Applet ist die Funktion f(x) = 0,2x^2+0,5 dargestellt. Sieh dir zunächst die Formeln und die Abbildung in der Darstellung an. Durch Verschieben des x1-x0-Schiebereglers verändern sich die Werte in den Formeln und die Abbildung. Probier einmal aus, was sich verändert.

a) Was gibt die Variable ms an?

b) Fülle nun den folgenden Lückentext aus.