Kehrsatz

Aus Projektwiki - ein Wiki mit Schülern für Schüler.
< Gymnasium Untergriesbach‎ | Klasse 7CD‎ | Bereich 7C
Version vom 6. Juli 2018, 14:25 Uhr von Matthias Mohr (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Arbeitsaufträge:

  • Schaue dir das Videos an, wie die Umkehrung des Satzes von Thales lautet.
  • Beantworte die Kontrollfragen.
  • Notiere dir, anhand der vorgegebenen Fragen, Bemerkungen in OneNote.
  • Erstelle einen Hefteintrag in deinem Skript.
  • Für Interessierte gibt es auch noch die Herleitung der Umkehrung des Satzes von Thales (Diese Aufgabe ist optional).


Inhaltsverzeichnis

Kehrsatz zum Satz des Thales


Merke: Umkehrung des Satzes von Thales
Wenn ein Dreieck bei C einen rechten Winkel hat, dann liegt die Ecke C dieses Dreiecks auf dem Halbkreis über [AB].


Kontrollfragen


Für Interessierte: Beweis des Kehrsatzes (Optional)

Wir gehen davon aus, dass ein Dreieck wie das gezeichnete rechtwinklig ist.

Es gilt \alpha + \beta = 90^\circ.

Durch die Ecke C lässt sich daher eine Gerade g so legen, dass \gamma_1 = \alpha und \gamma_2 = \beta.
Die beiden Teildreiecke besitzen dadurch jeweils zwei gleich große Winkel, sind also gleichschenklig.

Es gilt: \overline{AD}=\overline{CD} und \overline{CD}=\overline{BD}.

Also sind die Punkte A, B und C gleich weit von D entfernt, liegen somit auf dem Kreis um D, der zugleich Mittelpunkt von [AB] ist.

Das heißt: Wenn das Dreieck ABC bei C rechtwinklig ist, dann liegt C auf dem Halbkreis über [AB].

Rechtwinkliges Dreieck.JPG




Quellenangabe

Video "Rechtwinklige Dreiecke - Satz des Thales (Teil 1)" von Mathegym, über https://www.youtube.com/watch?v=RGZs_R7YFgE (Zugriff am 28.05.2018)