Achtung:

Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.

Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.


Gerne kannst Du natürlich weiterarbeiten

im neuen Projektwiki (projekte.zum.de).

Grenzwerte im Unendlichen: Unterschied zwischen den Versionen

Aus Projektwiki - ein Wiki mit Schülern für Schüler.
Wechseln zu: Navigation, Suche
 
(10 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 3: Zeile 3:
  
  
<center><table border="0" width="950px" cellpadding=5 cellspacing=15>
+
<center><table border="0" width="850px" cellpadding=5 cellspacing=15>
 
<tr><td  width="800px" valign="top">
 
<tr><td  width="800px" valign="top">
<big>Will man anhand des Funktionsterms Aussagen über den Verlauf des Graphens machen, muss man auch wissen, wie sich die Funktion für immer größer und immer kleiner werdende x- Werte verhält.<br />
+
Bearbeite parallel zum Lernpfad das [http://wikis.zum.de/projektwiki/Datei:AB_Grenzwerte.pdf Arbeitsblatt] zum Thema "Grenzwerte im Unendlichen".<br />
 +
<br />
 +
Will man anhand des Funktionsterms Aussagen über den Verlauf des Graphens machen, muss man auch wissen, wie sich die Funktion für immer größer und immer kleiner werdende x- Werte verhält.<br />
 
''Anschaulich gesprochen:'' Man betrachtet den Funktionsgraphen am rechten und linken Bildrand.
 
''Anschaulich gesprochen:'' Man betrachtet den Funktionsgraphen am rechten und linken Bildrand.
  
Bei [http://wikis.zum.de/projektwiki/Manipulationen_an_Funktionen/Grenzwerte_im_Unendlichen/Wiederholung:Ganzrationale_Funktionen ganzrationalen Funktionen] hast du bereits vier Fälle über den charakteristischen Verlauf einer Funktion kennen gelernt.<br />
+
Bei [http://wikis.zum.de/projektwiki/Manipulationen_an_Funktionen/Grenzwerte_im_Unendlichen/Wiederholung:Ganzrationale_Funktionen ganzrationalen Funktionen] hast du in der 10. Klasse vier Fälle über den charakteristischen Verlauf einer Funktion kennen gelernt.<br />
 +
 
 +
</td></tr></table></center>
 +
</div>
 +
 
 +
<div style="padding:1px;background:#66CD00;border:0px groove;">
 +
 
 +
 
 +
<center><table border="0" width="950px" cellpadding=5 cellspacing=15>
 +
<tr><td  width="800px" valign="top">
  
 +
<big>Auch mit dem Verhalten von gebrochen rationalen Funktionen für immer größer werdende x- Werte hast du dich schon auseinandergesetzt.<br />
 +
Dieses Wissen wird jetzt noch weiter vertieft.<br />
  
Auch mit dem Verhalten von gebrochen rationalen Funktionen für immer größer werdende x- Werte hast du dich schon auseinandergesetzt.<br />
 
Dieses Wissen wird jetzt noch weiter vertieft.
 
  
  
Zeile 22: Zeile 33:
 
#Fülle die '''Wertetabelle''' vollständig aus, indem du die Funktionswerte in das jeweilige Feld eingibst. Wenn sich das Feld grün färbt, war deine Eingabe richtig.<br />
 
#Fülle die '''Wertetabelle''' vollständig aus, indem du die Funktionswerte in das jeweilige Feld eingibst. Wenn sich das Feld grün färbt, war deine Eingabe richtig.<br />
 
#Übertrage die berechneten Punkte in das '''GeoGebra-Applet''' und skizziere den Verlauf des Funktionsgraphen von f über den Button "Freihandskizze erkennen".<br />
 
#Übertrage die berechneten Punkte in das '''GeoGebra-Applet''' und skizziere den Verlauf des Funktionsgraphen von f über den Button "Freihandskizze erkennen".<br />
#Wie verhält sich die Funktion f für immer größer, bzw. immer kleiner werdende x- Werte?<br />
+
#Wie verhält sich der Graph von f für immer größer, bzw. immer kleiner werdende x- Werte?<br />
 
</big>
 
</big>
  
Zeile 32: Zeile 43:
 
*Über die beiden Kontrollkästchen lässt sich der '''<span style="color: #3A5FCD ">Graph der Funktion f</span>''' und die '''<span style="color: #EE7600 ">Gerade</span>''', an die sich '''<span style="color: #3A5FCD ">f</span>''' annähert, anzeigen.
 
*Über die beiden Kontrollkästchen lässt sich der '''<span style="color: #3A5FCD ">Graph der Funktion f</span>''' und die '''<span style="color: #EE7600 ">Gerade</span>''', an die sich '''<span style="color: #3A5FCD ">f</span>''' annähert, anzeigen.
 
*Mit dem letzten Symbol "Verschiebe Zeichenblatt" in der Werkzeugleiste kannst du dir die beiden Graphen auch über den eigentlichen Bildrand hinweg anschauen.
 
*Mit dem letzten Symbol "Verschiebe Zeichenblatt" in der Werkzeugleiste kannst du dir die beiden Graphen auch über den eigentlichen Bildrand hinweg anschauen.
*Unter dem gleichen Symbol lässt sich auch das Werkzeug "Vergrößere" auswählen.<br />Sieh dir genau an, ob sich die beiden Graphen berühren!</big>
+
*Unter dem gleichen Symbol lässt sich auch das Werkzeug "Vergrößere" auswählen.<br />Sieh dir genau an, ob sich die beiden Graphen berühren!
 +
*Übertrage den '''<span style="color: #3A5FCD ">Graphen der Funktion f</span>''', sowie die '''<span style="color: #EE7600 ">Gerade</span>''' in das Koordinatensystem auf deinem '''Arbeitsblatt'''.
 +
</big>
 
|}
 
|}
  
 
<popup name="Antwort">
 
<popup name="Antwort">
Der Graph der Funktion '''<span style="color: #3A5FCD ">f</span>''': x -> <math>\frac{4x-3}{x}</math> scheint sich für immer größer werdende x- Werte der Gerade '''<span style="color: #EE7600 ">y = 4</span>''' anzunähern.<br />
+
Der Graph der Funktion '''<span style="color:blue ">f: x -> '''<math>\frac{4x-3}{x}</math></span> scheint sich für immer größer werdende x- Werte der Gerade '''<span style="color: #EE7600 ">y = 4</span>''' anzunähern.<br />
 
Für immer kleiner werdende x- Werte nähern sich die Funktionswerte scheinbar ebenfalls dem Wert '''<span style="color: #EE7600 ">4</span>''' an.<br />
 
Für immer kleiner werdende x- Werte nähern sich die Funktionswerte scheinbar ebenfalls dem Wert '''<span style="color: #EE7600 ">4</span>''' an.<br />
 
Durch das GeoGebra-Werkzeug "Vergrößere" hat es aber den Anschein, als würden sich die beiden Graphen nie berühren.<br />
 
Durch das GeoGebra-Werkzeug "Vergrößere" hat es aber den Anschein, als würden sich die beiden Graphen nie berühren.<br />
Zeile 43: Zeile 56:
  
 
<big>
 
<big>
Diese Vermutung lässt sich mathematisch untersuchen:<br />
+
Diese Vermutung lässt sich mathematisch untersuchen, wobei es hier hilfreich ist, f als Differenz zu schreiben.<br />
 +
Halte die wichtigsten Ergebnisse dabei auf deinem Arbeitsblatt fest.<br />
 
<br />
 
<br />
'''<span style="color: #3A5FCD ">f (x)</span>''' = <math>\frac{4x-3}{x}</math> = <math>\frac{4x}{x}</math> - <math>\frac{3}{x}</math> = '''<span style="color: #EE7600 ">4</span>''' - <math>\frac{3}{x}</math><br />
+
 
 +
'''<span style="color: #3A5FCD ">f (x)''' = <math>\frac{4x-3}{x}</math> = <math>\frac{4x}{x}</math> - <math>\frac{3}{x}</math></span> = '''<span style="color: #EE7600 ">4</span>''' - <math>\frac{3}{x}</math><br />
 
<br />
 
<br />
 
Für immer größer werdende x- Werte wird der Bruch <math>\frac{3}{x}</math> immer kleiner, nähert sich also der Null an, während die Zahl '''<span style="color: #EE7600 ">4</span>''' unverändert bleibt.<br />
 
Für immer größer werdende x- Werte wird der Bruch <math>\frac{3}{x}</math> immer kleiner, nähert sich also der Null an, während die Zahl '''<span style="color: #EE7600 ">4</span>''' unverändert bleibt.<br />
Zeile 53: Zeile 68:
 
Die Betrachtung einer Funktion f unter immer '''<span style="color: red">größer</span>''' werdenden x- Werten schreibt man mathematisch:<br />
 
Die Betrachtung einer Funktion f unter immer '''<span style="color: red">größer</span>''' werdenden x- Werten schreibt man mathematisch:<br />
 
<center><math>\lim_{x \to \infty}f (x)</math></center><br />
 
<center><math>\lim_{x \to \infty}f (x)</math></center><br />
sprich'''''"Limes von f (x) für x gegen '''<span style="color: red">+</span>''' <math>\infty</math>"'''''
+
sprich'''''"Limes von f (x) für x gegen '''<span style="color: red">+</span>''' <math> \infty</math>"'''''
 
<br />
 
<br />
Durch den '''''Limes von f für x gegen '''<span style="color: red">-</span>''' <math>\infty</math>'''''<br /> <center><math>\lim_{x\rightarrow\ -\infty} f(x)</math></center><br /> wird untersucht, wie sich f (x) für immer '''<span style="color: red">kleiner</span>''' werdende x- Werte verhält.
+
Durch den '''''Limes von f (x) für x gegen '''<span style="color: red">-</span>''' <math> \infty</math>'''''<br /> <center><math>\lim_{x\rightarrow\ -\infty} f(x)</math></center><br /> wird untersucht, wie sich f (x) für immer '''<span style="color: red">kleiner</span>''' werdende x- Werte verhält.
  
  
Zeile 62: Zeile 77:
 
<math>\lim_{x \to \infty}f (x)</math> = <math>\lim_{x \to \infty}\frac{4x-3}{x}</math>  = <math>\lim_{x \to \infty}4  -  \lim_{x \to \infty}\frac{3}{x}</math>  = '''<span style="color: #EE7600 ">4</span>''' - 0 = '''<span style="color: #EE7600 ">4</span>'''<br />
 
<math>\lim_{x \to \infty}f (x)</math> = <math>\lim_{x \to \infty}\frac{4x-3}{x}</math>  = <math>\lim_{x \to \infty}4  -  \lim_{x \to \infty}\frac{3}{x}</math>  = '''<span style="color: #EE7600 ">4</span>''' - 0 = '''<span style="color: #EE7600 ">4</span>'''<br />
 
<br />
 
<br />
Das gleiche Ergebnis erhält man, wenn man den Limes von f für x gegen - <math>\infty</math> untersucht, da das Vorzeichen hier keine Rolle spielt.<br />
+
Das gleiche Ergebnis erhält man, wenn man den Limes von f für x gegen - <math>\infty</math> untersucht, da das Vorzeichen hier keine Rolle spielt:<br />
 +
<br />
 +
<math>\lim_{x \to \ -\infty}f (x)</math> = <math>\lim_{x \to \ -\infty}\frac{4x-3}{x}</math>  = <math>\lim_{x \to \ -\infty}4  -  \lim_{x \to \ -\infty}\frac{3}{x}</math>  = '''<span style="color: #EE7600 ">4</span>''' + 0 = '''<span style="color: #EE7600 ">4</span>'''<br />
 +
<br />
 
Damit heißt '''<span style="color: #EE7600 ">4</span>''' der '''<span style="color: #EE7600 ">Grenzwert</span>''' der Funktion '''<span style="color: #3A5FCD ">f</span>''' für x gegen + <math>\infty</math> und gegen - <math>\infty</math>.<br />
 
Damit heißt '''<span style="color: #EE7600 ">4</span>''' der '''<span style="color: #EE7600 ">Grenzwert</span>''' der Funktion '''<span style="color: #3A5FCD ">f</span>''' für x gegen + <math>\infty</math> und gegen - <math>\infty</math>.<br />
 
</big>
 
</big>
Zeile 72: Zeile 90:
  
  
<center><table border="0" width="800px" cellpadding=5 cellspacing=15>
+
<center><table border="0" width="850px" cellpadding=5 cellspacing=15>
 
<tr><td  width="800px" valign="top">
 
<tr><td  width="800px" valign="top">
 
=== <big>Allgemein ===
 
=== <big>Allgemein ===
Im Applet siehst du die gebrochen rationale Funktion '''<span style="color: blue"><math>f(x)=\frac{ax+b}{x}</math></span>'''.<br />
+
Im Applet siehst du die gebrochen rationale Funktion '''<span style="color: blue"><math> f(x)=\frac{ax+b}{x}</math></span>'''.<br />
  
 
Über die Schieberegler '''a''' und '''b''' lässt sich der Graph der Funktion verändern.<br />
 
Über die Schieberegler '''a''' und '''b''' lässt sich der Graph der Funktion verändern.<br />
 
Welchen Zusammenhang kannst du zwischen '''a''', '''b''' und der '''<span style="color: orange">waagrechten Asymptote</span>''' von <span style="color: blue">'''f'''</span> feststellen?<br />
 
Welchen Zusammenhang kannst du zwischen '''a''', '''b''' und der '''<span style="color: orange">waagrechten Asymptote</span>''' von <span style="color: blue">'''f'''</span> feststellen?<br />
  
Betrachte auch hier das Verhalten der Funktion für x gegen + oder - Unendlich, indem du die GeoGebra-Werkzeugleiste benutzt.</big>
+
Betrachte auch hier das Verhalten des Funktionsgraphen für x gegen <math> + \infty</math> oder <math> - \infty</math>, indem du die GeoGebra-Werkzeugleiste benutzt.<br />
 +
Wie lautet der '''<span style="color: orange">Grenzwert</span>''' von '''<span style="color: blue">f</span>''' ?</big>
  
 
<ggb_applet width="773" height="571"  version="4.2" ggbBase64="UEsDBBQACAAIAFqS70IAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACABaku9CAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbL1YbW/bNhD+nP6Kgz61a2KTendgt2gLDOuQdsXSDd2+DJRE22xkSRMpWy7643ckJVt2XtokQ9HYJ1L3/twd6U5ftqsc1ryWoixmDh0RB3iRlpkoFjOnUfOz2Hn54sl0wcsFT2oG87JeMTVz/JHr7OVwNfJCLSyymROFLE5Txs7mcZKd+SSjZ4kbTs7cLKVeyAKSJZED0EpxXpTv2YrLiqX8Ml3yFbsoU6aMzqVS1fl4vNlsRr31UVkvxotFMmpl5gB6XsiZ0z2co7oDoY1n2F1C6PjTuwur/kwUUrEi5Q7oqBrx4snJdCOKrNzARmRqOXNigmEsuVgsMczQCxwYa6YKY614qsSaSxQdLE3MalU5ho0V+v2JfYJ8F44DmViLjNczh4zoxEW9ZS14obr3tLMz7jVM14JvrCr9ZKz4ZIKZWwspkpzPnDnLJUYiinmNWUQn6gaXUm1znrC6X+99oKf4DxnEF651YZw2dB1ndErdyWlEyGkQEOvL0LADqixzo5VAMIGvX8ElLoFTTaglLpIwtK+I3SOeJa4lviWB5fGtuG9ZfcvjWx7fuyPObr0PtNs4iLSP0xvGSTE+/QnxYxJwFGc8iJPqIL4C1d4b4oH2mxr/NfG7ZWiXkSGUWEK7l7H+MvkKHxmR96CI6MCqrYfbjV6rl95iFHnfb9F9VJy7KGngX7fpBrdE+cjk7o0OUou2zJ/5XDPp3SvOW1N7D4uh/5jef4DBiBy0fd/zltKO3pWG/82p6bifhtPOIZBLzduVtOIrqV30JmY4AYUAmzeMcJYEQCdIIt3ELtAA/ACXNIZQ0wg83bc+eBCD5qMemBEUxPjlm54OIUBdejOyzQ2eD4EH1AwuHzALYIYf5sT1kCMIIEAhbZ1qs14IfogLLwYfHdRjL9KjxUM5XKNxFzwKnpalEbghhC5EenRSX0/UMNa+o1IXQgKhFsXZiXPTzkyUiMHT0WAXVKUUu+QueV7tUDF5FEXVqC533X66yvo8qvKIPSvTq9dHyeZMqv4ZmfDE2p+F9gQ7OCpPpjlLeI4XiktdBwBrlus2N/rnZaGgr4HY7i1qVi1FKi+5Uigl4TNbswumePszcsveQWPanOBT3qS5yAQr/sQi0Sq0QugPdDO8+gPdn3SW07Kss8utxMqB9m9el+hTHI5cEvqUxBF+RRMHtvaN68cj4kc0pnTiu56eUSnTBe8GozCIJiSYUBp4gafn0PaWd5E1zNe7wFjLZZ/JRS2y4fNb+brMsx0aVSkK9YZVqqnN1QxdqHVEr4pFzk1izeDFS056lZTtpc2oZ3V93Fa4ItZ+snhT5mUNtfYQbyGLjiaWGh7t2I6LGB5iOEgPkch27/EyYzgMTSw1XIi5da0LlPZRUtKbEdIMGlQ+rDBTMDOndaAphLqwK6xOkV51oVIr8L5ZJVhsndyhTnqjzu1DdGqv8fom1afuiqyf/xo8f1xyxfTFLnC9YBJHUYDf7iSObZUe1ef0itcFz20VFlgKTdlI2xa70j6ZNpJ/YGr5qsh+5wts6A9Mz1SFrlnWvXsZT8UKBe1+l3ymC+MPDNXuZnxR8z5FublNW2jMWzLsiWvbRtXPdbl6W6w/YtUduTod9/FMZVqLStc2JDjkr/i+fjFLDI+IbCiHwUuMItXjCoFQ5gR52j6DGTxl7fPk2TlWAGvUssQqe7etBVvBBTqD2nAa6PKGX5tc4PjFQtdjIOcrvFCDMuVeNCtei3SHPDP3c3S96aMbdfFp1KFMPuPIOqqWfY7x9S0NASyvlgZ82pU92/L6IIFG22/zueQK2plzhn2yRRIN3r4rs86tTovM9Y8FWInCcMKKoSRSlsgybxT+XEI8i/3PJet3N/LwqqRLEyWC0PwsQ3PUNXtz0fLdoMHMii9Ygkelt29chYP4Cn+P2O5V3RwxD7+ILOPFzl9WYA0aJHGkVjYdgMcAzw5FK0yPmWCD+umA+yaEyTGE9MdCeDdIONUsSvrh4TBF9E6Y9vHciJL7Q1BqqxqtaTVdltN/UBq3ccBi97Jek3bRXhIOgbX7A9mHYNifXtSNruFIvrMVg9C2ouvdCHM3Sw0Yx1PXDEuplZAeOk2/oLa9/ZsgCu6GiP9bWBFpjyXMai5Sob4NwryDYDdD4Sdo4Tkkz2AM7U04zJvCTF9nr+IhSATUAKFJd4u4PxLUIhHeDAS9A4j7J3mYxvHwFDJXyu4/m178B1BLBwiDTvRwewYAABwTAABQSwECFAAUAAgACABaku9CRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAFqS70KDTvRwewYAABwTAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAEwcAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "true" showToolBarHelp = "true" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" useLocalJar="true"/>
 
<ggb_applet width="773" height="571"  version="4.2" ggbBase64="UEsDBBQACAAIAFqS70IAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACABaku9CAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbL1YbW/bNhD+nP6Kgz61a2KTendgt2gLDOuQdsXSDd2+DJRE22xkSRMpWy7643ckJVt2XtokQ9HYJ1L3/twd6U5ftqsc1ryWoixmDh0RB3iRlpkoFjOnUfOz2Hn54sl0wcsFT2oG87JeMTVz/JHr7OVwNfJCLSyymROFLE5Txs7mcZKd+SSjZ4kbTs7cLKVeyAKSJZED0EpxXpTv2YrLiqX8Ml3yFbsoU6aMzqVS1fl4vNlsRr31UVkvxotFMmpl5gB6XsiZ0z2co7oDoY1n2F1C6PjTuwur/kwUUrEi5Q7oqBrx4snJdCOKrNzARmRqOXNigmEsuVgsMczQCxwYa6YKY614qsSaSxQdLE3MalU5ho0V+v2JfYJ8F44DmViLjNczh4zoxEW9ZS14obr3tLMz7jVM14JvrCr9ZKz4ZIKZWwspkpzPnDnLJUYiinmNWUQn6gaXUm1znrC6X+99oKf4DxnEF651YZw2dB1ndErdyWlEyGkQEOvL0LADqixzo5VAMIGvX8ElLoFTTaglLpIwtK+I3SOeJa4lviWB5fGtuG9ZfcvjWx7fuyPObr0PtNs4iLSP0xvGSTE+/QnxYxJwFGc8iJPqIL4C1d4b4oH2mxr/NfG7ZWiXkSGUWEK7l7H+MvkKHxmR96CI6MCqrYfbjV6rl95iFHnfb9F9VJy7KGngX7fpBrdE+cjk7o0OUou2zJ/5XDPp3SvOW1N7D4uh/5jef4DBiBy0fd/zltKO3pWG/82p6bifhtPOIZBLzduVtOIrqV30JmY4AYUAmzeMcJYEQCdIIt3ELtAA/ACXNIZQ0wg83bc+eBCD5qMemBEUxPjlm54OIUBdejOyzQ2eD4EH1AwuHzALYIYf5sT1kCMIIEAhbZ1qs14IfogLLwYfHdRjL9KjxUM5XKNxFzwKnpalEbghhC5EenRSX0/UMNa+o1IXQgKhFsXZiXPTzkyUiMHT0WAXVKUUu+QueV7tUDF5FEXVqC533X66yvo8qvKIPSvTq9dHyeZMqv4ZmfDE2p+F9gQ7OCpPpjlLeI4XiktdBwBrlus2N/rnZaGgr4HY7i1qVi1FKi+5Uigl4TNbswumePszcsveQWPanOBT3qS5yAQr/sQi0Sq0QugPdDO8+gPdn3SW07Kss8utxMqB9m9el+hTHI5cEvqUxBF+RRMHtvaN68cj4kc0pnTiu56eUSnTBe8GozCIJiSYUBp4gafn0PaWd5E1zNe7wFjLZZ/JRS2y4fNb+brMsx0aVSkK9YZVqqnN1QxdqHVEr4pFzk1izeDFS056lZTtpc2oZ3V93Fa4ItZ+snhT5mUNtfYQbyGLjiaWGh7t2I6LGB5iOEgPkch27/EyYzgMTSw1XIi5da0LlPZRUtKbEdIMGlQ+rDBTMDOndaAphLqwK6xOkV51oVIr8L5ZJVhsndyhTnqjzu1DdGqv8fom1afuiqyf/xo8f1xyxfTFLnC9YBJHUYDf7iSObZUe1ef0itcFz20VFlgKTdlI2xa70j6ZNpJ/YGr5qsh+5wts6A9Mz1SFrlnWvXsZT8UKBe1+l3ymC+MPDNXuZnxR8z5FublNW2jMWzLsiWvbRtXPdbl6W6w/YtUduTod9/FMZVqLStc2JDjkr/i+fjFLDI+IbCiHwUuMItXjCoFQ5gR52j6DGTxl7fPk2TlWAGvUssQqe7etBVvBBTqD2nAa6PKGX5tc4PjFQtdjIOcrvFCDMuVeNCtei3SHPDP3c3S96aMbdfFp1KFMPuPIOqqWfY7x9S0NASyvlgZ82pU92/L6IIFG22/zueQK2plzhn2yRRIN3r4rs86tTovM9Y8FWInCcMKKoSRSlsgybxT+XEI8i/3PJet3N/LwqqRLEyWC0PwsQ3PUNXtz0fLdoMHMii9Ygkelt29chYP4Cn+P2O5V3RwxD7+ILOPFzl9WYA0aJHGkVjYdgMcAzw5FK0yPmWCD+umA+yaEyTGE9MdCeDdIONUsSvrh4TBF9E6Y9vHciJL7Q1BqqxqtaTVdltN/UBq3ccBi97Jek3bRXhIOgbX7A9mHYNifXtSNruFIvrMVg9C2ouvdCHM3Sw0Yx1PXDEuplZAeOk2/oLa9/ZsgCu6GiP9bWBFpjyXMai5Sob4NwryDYDdD4Sdo4Tkkz2AM7U04zJvCTF9nr+IhSATUAKFJd4u4PxLUIhHeDAS9A4j7J3mYxvHwFDJXyu4/m178B1BLBwiDTvRwewYAABwTAABQSwECFAAUAAgACABaku9CRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAFqS70KDTvRwewYAABwTAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAEwcAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "true" showToolBarHelp = "true" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" useLocalJar="true"/>
 
<br />
 
<br />
 
<popup name="Antwort">
 
<popup name="Antwort">
Die Funktion '''<span style="color: blue"><math>f(x)=\frac{ax+b}{x}</math></span>''' nähert sich für immer größer und immer kleiner werdende x- Werte immer mehr der '''<span style="color: orange">Gerade y = a</span>''' an.
+
Die Funktion '''<span style="color: blue"><math> f(x)=\frac{ax+b}{x}</math></span>''' nähert sich für immer größer und immer kleiner werdende x- Werte immer mehr der '''<span style="color: orange">Gerade y = a</span>''' an.<br />
 +
 
 +
<big>&#8658;</big> <math>\lim_{x\rightarrow\infty} f(x) =  </math>'''<span style="color: orange"><big> a </big></span>''' und <math>\lim_{x\rightarrow\ -\infty} f(x) = </math>'''<span style="color: orange"><big> a </big></span>'''
 
</popup>
 
</popup>
 
<br />
 
<br />
 
<br />
 
<br />
 
<big>Im nächsten Applet ist die Funktion <span style="color: blue">'''f(x) = a ∙ e<sup>b ∙ x</sup> + c</span>''' abgebildet.<br />
 
<big>Im nächsten Applet ist die Funktion <span style="color: blue">'''f(x) = a ∙ e<sup>b ∙ x</sup> + c</span>''' abgebildet.<br />
Welcher Zusammenhang besteht hier zwischen den drei veränderlichen Zahlen '''a''', '''b''' und '''c''' und der <span style="color: orange">'''waagrechten Asymptote'''</span> von '''<span style="color: blue">f</span>'''?<br />
+
Welcher Zusammenhang besteht hier zwischen den drei veränderlichen Zahlen '''a''', '''b''' und '''c''' und der <span style="color: orange">'''waagrechten Asymptote'''</span> von '''<span style="color: blue">f</span>''' ?<br />
 
</big>
 
</big>
  
Zeile 96: Zeile 117:
 
<br />
 
<br />
 
<popup name="Antwort">
 
<popup name="Antwort">
Die Funktion '''<span style="color: blue">f(x) = a ∙ e<sup>b ∙ x</sup> + c</span>''' nähert sich für immer '''kleiner''' werdende x- Werte immer weiter der '''<span style="color: orange">Gerade y = c</span>''' an, sofern '''b > 0''' ist.<br />
+
Für '''b > 0''' nähert sich die Funktion '''<span style="color: blue">f(x) = a ∙ e<sup>b ∙ x</sup> + c</span>''' für immer '''kleiner''' werdende x- Werte immer weiter der '''<span style="color: orange">Gerade y = c</span>''' an. Geht man in positive x- Richtung, steigt die Funktion immer stärker, so dass man sie durch keine Zahl begrenzen kann.<br />
Für '''b < 0''' nähert sich '''<span style="color: blue">f</span>''' für immer '''größer''' werdende x- Werte immer mehr der '''<span style="color: orange">Gerade y = c</span>''' an.
+
 
 +
<big>&#8658;</big> <math>\lim_{x\rightarrow\ -\infty} f(x) = </math>'''<span style="color: orange"><big> c </big></span>''' und <math>\lim_{x\rightarrow\ +\infty} f(x) = \infty</math>
 +
<br />
 +
<br />
 +
Für '''b < 0''' nähert sich '''<span style="color: blue">f</span>''' für immer '''größer''' werdende x- Werte immer mehr der '''<span style="color: orange">Gerade y = c</span>''' an. Je weiter man den Graphen in negativer x- Richtung betrachtet, umso größer werden die Funktionswerte.<br />
 +
 
 +
<big>&#8658;</big> <math>\lim_{x\rightarrow\ -\infty} f(x) = \infty</math> und <math>\lim_{x\rightarrow\ +\infty} f(x) = </math>'''<span style="color: orange"><big> c </big></span>'''
 
</popup>
 
</popup>
 
<br />
 
<br />
 +
<big>Fülle den Lückentext aus und übertrage die kontrollierten Antworten auf dein Arbeitsblatt.</big><br />
 +
 
<div class="lueckentext-quiz">
 
<div class="lueckentext-quiz">
Allgemein gilt:<br />
+
<u><big>Allgemein gilt:</big></u><br />
 
Nähert sich der Graph einer Funktion f für '''immer größer werdende''' x-Werte einer '''Zahl''' <span style="color: orange">G</span> immer weiter an, so nennt man <span style="color: orange">G</span> den '''Grenzwert von f''' für x gegen + <math>\infty</math>:<br />
 
Nähert sich der Graph einer Funktion f für '''immer größer werdende''' x-Werte einer '''Zahl''' <span style="color: orange">G</span> immer weiter an, so nennt man <span style="color: orange">G</span> den '''Grenzwert von f''' für x gegen + <math>\infty</math>:<br />
In mathematischer Schreibweise: <math>\lim_{x \to \infty}f (x)</math> = <span style="color: orange">G</span><br />
+
In mathematischer Schreibweise: <math>\lim_{x \to \infty}f (x)</math> = <span style="color: orange"><big>G</big></span><br />
 +
 
 +
Auf gleiche Weise definiert man den Grenzwert einer Funktion f für '''immer kleiner werdende''' x- Werte, also für x gegen - <math>\infty</math>, mit <math>\lim_{x\rightarrow\ -\infty} f(x)</math> = <span style="color: orange"><big> G </big></span>
 
<br />
 
<br />
Die Gerade '''<span style="color: orange">y = G</span>''' ist dann eine '''<span style="color: orange">waagrechte Asymptote</span>''' für den Graphen von f.<br />
 
  
Auf gleiche Weise definiert man den Grenzwert einer Funktion für '''immer kleiner werdende''' x- Werte, also für x gegen - <math>\infty</math>, mit <math>\lim_{x\rightarrow\ -\infty} f(x)</math>.
+
Die Gerade '''<span style="color: orange">y = G</span>''' ist dann eine '''<span style="color: orange">waagrechte Asymptote</span>''' für den Graphen von f.
  
 +
Nähert sich eine Funktion f für immer größere x- Werte '''keiner festen Grenze''' an, sondern fällt bspw. gegen '''<math>-\infty</math>''', so heißt f <u>divergent</u> und man schreibt:<br />
 +
<math>\lim_{x\rightarrow\ +\infty} f(x) = -\infty</math>.
 
</div>
 
</div>
 +
<br />
 +
<br />
 +
 +
<big> Stimmt der Grenzwert einer Funktion für <math>{x\rightarrow\ +\infty}</math> mit dem Grenzwert für <math>{x\rightarrow\ -\infty}</math> überein, lassen sich beide Grenzwerte auch zusammenfassen, wie es in der folgenden Übung gemacht wurde.</big>
 
</td></tr></table></center>
 
</td></tr></table></center>
 
</div>
 
</div>
Zeile 130: Zeile 166:
 
{{Vorlage:Lesepfad Ende
 
{{Vorlage:Lesepfad Ende
 
|Link zurück=[[Manipulationen an Funktionen|Zurück zur Übersicht]]
 
|Link zurück=[[Manipulationen an Funktionen|Zurück zur Übersicht]]
|Link vor=
+
|Link vor=[[Manipulationen an Funktionen/Übungen|Weiter zu Übungen über den Stoff des gesamten Lernpfads]]
 
|Text Copyright=<colorize>Manipulationen an Funktionen</colorize>
 
|Text Copyright=<colorize>Manipulationen an Funktionen</colorize>
 
}}
 
}}
 
|}
 
|}

Aktuelle Version vom 14. Juli 2014, 09:15 Uhr


Bearbeite parallel zum Lernpfad das Arbeitsblatt zum Thema "Grenzwerte im Unendlichen".

Will man anhand des Funktionsterms Aussagen über den Verlauf des Graphens machen, muss man auch wissen, wie sich die Funktion für immer größer und immer kleiner werdende x- Werte verhält.
Anschaulich gesprochen: Man betrachtet den Funktionsgraphen am rechten und linken Bildrand.

Bei ganzrationalen Funktionen hast du in der 10. Klasse vier Fälle über den charakteristischen Verlauf einer Funktion kennen gelernt.


Auch mit dem Verhalten von gebrochen rationalen Funktionen für immer größer werdende x- Werte hast du dich schon auseinandergesetzt.
Dieses Wissen wird jetzt noch weiter vertieft.


Hierfür ein Beispiel:
f(x)=\frac{4x-3}{x}

  1. Fülle die Wertetabelle vollständig aus, indem du die Funktionswerte in das jeweilige Feld eingibst. Wenn sich das Feld grün färbt, war deine Eingabe richtig.
  2. Übertrage die berechneten Punkte in das GeoGebra-Applet und skizziere den Verlauf des Funktionsgraphen von f über den Button "Freihandskizze erkennen".
  3. Wie verhält sich der Graph von f für immer größer, bzw. immer kleiner werdende x- Werte?




  • Über die beiden Kontrollkästchen lässt sich der Graph der Funktion f und die Gerade, an die sich f annähert, anzeigen.
  • Mit dem letzten Symbol "Verschiebe Zeichenblatt" in der Werkzeugleiste kannst du dir die beiden Graphen auch über den eigentlichen Bildrand hinweg anschauen.
  • Unter dem gleichen Symbol lässt sich auch das Werkzeug "Vergrößere" auswählen.
    Sieh dir genau an, ob sich die beiden Graphen berühren!
  • Übertrage den Graphen der Funktion f, sowie die Gerade in das Koordinatensystem auf deinem Arbeitsblatt.


Diese Vermutung lässt sich mathematisch untersuchen, wobei es hier hilfreich ist, f als Differenz zu schreiben.
Halte die wichtigsten Ergebnisse dabei auf deinem Arbeitsblatt fest.

f (x) = \frac{4x-3}{x} = \frac{4x}{x} - \frac{3}{x} = 4 - \frac{3}{x}

Für immer größer werdende x- Werte wird der Bruch \frac{3}{x} immer kleiner, nähert sich also der Null an, während die Zahl 4 unverändert bleibt.
Also nähert sich f (x) für immer größer werdende x- Werte immer mehr 4 - 0 = 4 an.


Die Betrachtung einer Funktion f unter immer größer werdenden x- Werten schreibt man mathematisch:

\lim_{x \to \infty}f (x)

sprich"Limes von f (x) für x gegen +  \infty"

Durch den Limes von f (x) für x gegen -  \infty
\lim_{x\rightarrow\ -\infty} f(x)

wird untersucht, wie sich f (x) für immer kleiner werdende x- Werte verhält.


In unserem Beispiel können wir schreiben:

\lim_{x \to \infty}f (x) = \lim_{x \to \infty}\frac{4x-3}{x} = \lim_{x \to \infty}4  -  \lim_{x \to \infty}\frac{3}{x} = 4 - 0 = 4

Das gleiche Ergebnis erhält man, wenn man den Limes von f für x gegen - \infty untersucht, da das Vorzeichen hier keine Rolle spielt:

\lim_{x \to \ -\infty}f (x) = \lim_{x \to \ -\infty}\frac{4x-3}{x} = \lim_{x \to \ -\infty}4  -  \lim_{x \to \ -\infty}\frac{3}{x} = 4 + 0 = 4

Damit heißt 4 der Grenzwert der Funktion f für x gegen + \infty und gegen - \infty.


Allgemein

Im Applet siehst du die gebrochen rationale Funktion  f(x)=\frac{ax+b}{x}.

Über die Schieberegler a und b lässt sich der Graph der Funktion verändern.
Welchen Zusammenhang kannst du zwischen a, b und der waagrechten Asymptote von f feststellen?

Betrachte auch hier das Verhalten des Funktionsgraphen für x gegen  + \infty oder  - \infty, indem du die GeoGebra-Werkzeugleiste benutzt.
Wie lautet der Grenzwert von f ?




Im nächsten Applet ist die Funktion f(x) = a ∙ eb ∙ x + c abgebildet.
Welcher Zusammenhang besteht hier zwischen den drei veränderlichen Zahlen a, b und c und der waagrechten Asymptote von f ?



Fülle den Lückentext aus und übertrage die kontrollierten Antworten auf dein Arbeitsblatt.

Allgemein gilt:
Nähert sich der Graph einer Funktion f für immer größer werdende x-Werte einer Zahl G immer weiter an, so nennt man G den Grenzwert von f für x gegen + \infty:
In mathematischer Schreibweise: \lim_{x \to \infty}f (x) = G

Auf gleiche Weise definiert man den Grenzwert einer Funktion f für immer kleiner werdende x- Werte, also für x gegen - \infty, mit \lim_{x\rightarrow\ -\infty} f(x) = G

Die Gerade y = G ist dann eine waagrechte Asymptote für den Graphen von f.

Nähert sich eine Funktion f für immer größere x- Werte keiner festen Grenze an, sondern fällt bspw. gegen -\infty, so heißt f divergent und man schreibt:
\lim_{x\rightarrow\ +\infty} f(x) = -\infty.



Stimmt der Grenzwert einer Funktion für {x\rightarrow\ +\infty} mit dem Grenzwert für {x\rightarrow\ -\infty} überein, lassen sich beide Grenzwerte auch zusammenfassen, wie es in der folgenden Übung gemacht wurde.


Übung

Ordne den Funktionsgraphen den richtigen Grenzwert zu.
Wenn du einen Graphen anklickst, wird das Bild vergrößert.
Beachte dabei den Funktionsterm, der ebenfalls Rückschlüsse auf den Grenzwert liefert.





Zurück zur Übersicht Weiter zu Übungen über den Stoff des gesamten Lernpfads

Manipulationen an Funktionen