Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.
Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.
Gerne kannst Du natürlich weiterarbeiten
im neuen Projektwiki (projekte.zum.de).Punktsymmetrie zum Ursprung: Unterschied zwischen den Versionen
Zeile 6: | Zeile 6: | ||
<tr><td width="800px" valign="top"> | <tr><td width="800px" valign="top"> | ||
{| | {| | ||
− | | valign="top" width="400"|Spiegle die Punkte '''<span style="color: #008B00 ">A</span>''', '''<span style="color: #008B00 ">B</span>''', '''<span style="color: #008B00 ">C</span>''', '''<span style="color: #008B00 ">D</span>''' und '''<span style="color: #008B00 ">E</span>''' im Applet am Koordinatenursprung:<br /> | + | | valign="top" width="400"|Spiegle die Punkte '''<span style="color: #008B00 ">A</span>''', '''<span style="color: #008B00 ">B</span>''', '''<span style="color: #008B00 ">C</span>''', '''<span style="color: #008B00 ">D</span>''' und '''<span style="color: #008B00 ">E</span>''' im Applet am '''<span style="color: #551A8B">Koordinatenursprung</span>''':<br /> |
<br /> | <br /> | ||
Achte dabei auf die Kooordinaten der Spiegelpunkte.<br /> | Achte dabei auf die Kooordinaten der Spiegelpunkte.<br /> | ||
Zeile 23: | Zeile 23: | ||
<br /> | <br /> | ||
− | |width=" | + | |width="0,5%"| |
|<ggb_applet width="580" height="797" version="4.2" ggbBase64="UEsDBBQACAAIADlMvUIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIADlMvUIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1VhZc9s2EH52fsUOny0JB8+MlIyTtjOZsdNMnXTSvkEkRCHmNSR0ZfLjuwBISZZz1HbSTB1LOLjYxffh2wWd6fNtWcBatp2qq5lHx8QDWaV1pqp85q30YhR7z589meayzuW8FbCo21LomeePmXdYh6OxH5nFKpt5fLGgYSyCUSCiYOQTGoziVMxHLImCOQ0XNJbCA9h26mlVvxal7BqRyut0KUtxWadCW59LrZunk8lmsxkP0cd1m0/yfD7edpkHuPOqm3l95ym6u7Vow605I4RO3l9dOvcjVXVaVKn0wKBaqWdPzqYbVWX1BjYq08uZF5LEg6VU+RJhxmHowcQYNYi1kalWa9nh0qOhxazLxrNmojLPz1wPij0cDzK1VplsZx4Zcxb7JGLMT4I48RPqQd0qWenelvYxJ4O36VrJjXNrejaiT5IIj0B1al7ImbcQRYeoVLVokVHcULvCYad3hZyLdhgf9kPP8R8aqI/S+MKjczQgASE/x62dR4ScBwFxezkO7IGu68J6JRAk8OkTMMIInJuGuoZhE4buEXFzhLuGucZ3TeBsfLfcd6a+s/Gdjc+/grMfH4D2E7eQDjj5MU6K+MwnxI8l4ARnfISTGhCfgJrd24aD2Te1+zeN3w9DN4xsQ4lraP8wNl+Wr/CRiPiDENGjqE4PXw56Ry9DxCC+R0T2KJx7lOxzKFnwBZSPJHcISoOjoBjL/trPnZD8Xji/SO09Iob+Y3L/AQEj8l8EnE6GSjftcw+6pbHt5apl2ZmqwxNbeIBCgIkZRlgnAqAJNpFJUAY0AD/AIY0hNG0E3OSkDxxiMHaUgy0vQYxfvs3XEAL0ZSYjl7jAfQg4UFuUfMBSBLawYZFjHC2CAAJcZKJTE5aH4Ic44DH4uEFT0iJTNjiuwzEGZ8ApcLOWRsBCCBlEpixS31TLMDZ7R6cMQgKhWYp1EWuiq4e4IgZu0KDCm7pTe3KXsmj2p2J5VFWz0j13/XxaZgOPuj4xz+r05sUJ2VJ0euijEd5GhzvP3U63rsSzaSHmssAXh2ujA4C1KEwKW/+LutIwaCB2c3krmqVKu2upNa7q4INYi0uh5fY3tO6GDdrQ9qaeylVaqEyJ6k8UiXFhHMJwcdvCNFzcEU1clLSu2+x616FyYPu3bGusJhEZMx/vmpiRAG94Gniwc494xMcR8yl+QvwKI7xiu1QYzUfhOCFh7PPIT8wPnsHuziMUMt4UoQst13toYiu7gcu8Vdlx/1X3oi6y/Xk0tar0S9HoVWtfwrAItgbTRZUX0lJryyq+zqQ383p77TjlztfbXYMj4uLP85d1UbeACckCxJj37dy11sZsbG9FrA2xFmQ4JJXtn9OEWQvbzl1rrfDU3dZ6oHRASckQRnW2jKDzY41Zycy8rQerSulLN0J9qvSmh0rdgterco5y69fd9kk/63P3EJ9m1/ii1un35jUt8Gz/r6P+26XUwo4ZD5I4igL8ZkkcO52eKHR6I9tKFk6HFUphVa86lxh7cZ9NV518I/Tyosr+kDmm9BthqqrGrTnTw/YymaoSF7p5v+fBCOMdQnWzmcxbOVBU2PdmdzT2KTnOijvT1tVvbV2+qtZvUXUnW51OBjzTLm1VY7QNcyzzN/KgX2RJ4CWRHa9D8B2iSE3BwoPQ5hDerKob3TVK5rJYoR9VwjusJy32PRArvaxRcVe7VokSLoWZzLA2oHQTuBIKazFq3rouS1FlUNmL6FVlaMOa5B2KoCAosAsUC7qlqAvbtXDrlR4MLhy+3pupNYUs8Y0ctM0om5R7aV1Y70ZCUM8/YLQT6R0ODB8fsofFR/llR6JollZNPf+F2Mn21olYj78vFp3UsLX5BLtDWtmnV3XWnyLti63ayuxUOvbEO+PDRDNORrbz0f3V5/7GMShNQXGLo+PZE62g1B1B36DqxYOocoWIkqEU3Z+oEU8sSBY9gqmRTfueqpAFX2WLfwe2Xv4stiLfsZU8hi16ENaPp+qX/zlVvbDoOIyjH8/Wrz8tDfl3SEM2CMv/RsX6t1RNji8k+37Z/w/Ts38AUEsHCAw2aLcDBgAAERMAAFBLAQIUABQACAAIADlMvULWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAOUy9Qgw2aLcDBgAAERMAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACaBgAAAAA=" showResetIcon = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "true" showToolBarHelp = "true" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> | |<ggb_applet width="580" height="797" version="4.2" ggbBase64="UEsDBBQACAAIADlMvUIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIADlMvUIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1VhZc9s2EH52fsUOny0JB8+MlIyTtjOZsdNMnXTSvkEkRCHmNSR0ZfLjuwBISZZz1HbSTB1LOLjYxffh2wWd6fNtWcBatp2qq5lHx8QDWaV1pqp85q30YhR7z589meayzuW8FbCo21LomeePmXdYh6OxH5nFKpt5fLGgYSyCUSCiYOQTGoziVMxHLImCOQ0XNJbCA9h26mlVvxal7BqRyut0KUtxWadCW59LrZunk8lmsxkP0cd1m0/yfD7edpkHuPOqm3l95ym6u7Vow605I4RO3l9dOvcjVXVaVKn0wKBaqWdPzqYbVWX1BjYq08uZF5LEg6VU+RJhxmHowcQYNYi1kalWa9nh0qOhxazLxrNmojLPz1wPij0cDzK1VplsZx4Zcxb7JGLMT4I48RPqQd0qWenelvYxJ4O36VrJjXNrejaiT5IIj0B1al7ImbcQRYeoVLVokVHcULvCYad3hZyLdhgf9kPP8R8aqI/S+MKjczQgASE/x62dR4ScBwFxezkO7IGu68J6JRAk8OkTMMIInJuGuoZhE4buEXFzhLuGucZ3TeBsfLfcd6a+s/Gdjc+/grMfH4D2E7eQDjj5MU6K+MwnxI8l4ARnfISTGhCfgJrd24aD2Te1+zeN3w9DN4xsQ4lraP8wNl+Wr/CRiPiDENGjqE4PXw56Ry9DxCC+R0T2KJx7lOxzKFnwBZSPJHcISoOjoBjL/trPnZD8Xji/SO09Iob+Y3L/AQEj8l8EnE6GSjftcw+6pbHt5apl2ZmqwxNbeIBCgIkZRlgnAqAJNpFJUAY0AD/AIY0hNG0E3OSkDxxiMHaUgy0vQYxfvs3XEAL0ZSYjl7jAfQg4UFuUfMBSBLawYZFjHC2CAAJcZKJTE5aH4Ic44DH4uEFT0iJTNjiuwzEGZ8ApcLOWRsBCCBlEpixS31TLMDZ7R6cMQgKhWYp1EWuiq4e4IgZu0KDCm7pTe3KXsmj2p2J5VFWz0j13/XxaZgOPuj4xz+r05sUJ2VJ0euijEd5GhzvP3U63rsSzaSHmssAXh2ujA4C1KEwKW/+LutIwaCB2c3krmqVKu2upNa7q4INYi0uh5fY3tO6GDdrQ9qaeylVaqEyJ6k8UiXFhHMJwcdvCNFzcEU1clLSu2+x616FyYPu3bGusJhEZMx/vmpiRAG94Gniwc494xMcR8yl+QvwKI7xiu1QYzUfhOCFh7PPIT8wPnsHuziMUMt4UoQst13toYiu7gcu8Vdlx/1X3oi6y/Xk0tar0S9HoVWtfwrAItgbTRZUX0lJryyq+zqQ383p77TjlztfbXYMj4uLP85d1UbeACckCxJj37dy11sZsbG9FrA2xFmQ4JJXtn9OEWQvbzl1rrfDU3dZ6oHRASckQRnW2jKDzY41Zycy8rQerSulLN0J9qvSmh0rdgterco5y69fd9kk/63P3EJ9m1/ii1un35jUt8Gz/r6P+26XUwo4ZD5I4igL8ZkkcO52eKHR6I9tKFk6HFUphVa86lxh7cZ9NV518I/Tyosr+kDmm9BthqqrGrTnTw/YymaoSF7p5v+fBCOMdQnWzmcxbOVBU2PdmdzT2KTnOijvT1tVvbV2+qtZvUXUnW51OBjzTLm1VY7QNcyzzN/KgX2RJ4CWRHa9D8B2iSE3BwoPQ5hDerKob3TVK5rJYoR9VwjusJy32PRArvaxRcVe7VokSLoWZzLA2oHQTuBIKazFq3rouS1FlUNmL6FVlaMOa5B2KoCAosAsUC7qlqAvbtXDrlR4MLhy+3pupNYUs8Y0ctM0om5R7aV1Y70ZCUM8/YLQT6R0ODB8fsofFR/llR6JollZNPf+F2Mn21olYj78vFp3UsLX5BLtDWtmnV3XWnyLti63ayuxUOvbEO+PDRDNORrbz0f3V5/7GMShNQXGLo+PZE62g1B1B36DqxYOocoWIkqEU3Z+oEU8sSBY9gqmRTfueqpAFX2WLfwe2Xv4stiLfsZU8hi16ENaPp+qX/zlVvbDoOIyjH8/Wrz8tDfl3SEM2CMv/RsX6t1RNji8k+37Z/w/Ts38AUEsHCAw2aLcDBgAAERMAAFBLAQIUABQACAAIADlMvULWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAOUy9Qgw2aLcDBgAAERMAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACaBgAAAAA=" showResetIcon = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "true" showToolBarHelp = "true" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> | ||
+ | <br /> | ||
<br /> | <br /> | ||
<popup name="Lösung"> | <popup name="Lösung"> | ||
*Es besteht eine Beziehung zwischen den ursprünglichen Punkten P(x|y) und ihren Spiegelpunkten P´(-x|-y): | *Es besteht eine Beziehung zwischen den ursprünglichen Punkten P(x|y) und ihren Spiegelpunkten P´(-x|-y): | ||
− | **Die x- Koordinate und die y- Koordinate wird mit -1 multipliziert. | + | **Die x- Koordinate und die y- Koordinate wird jeweils mit -1 multipliziert. |
+ | *Sind die x-Werte also gleich weit von der y- Achse entfernt, dann haben die Funktionswerte immer ein positives und ein negatives Vorzeichen. | ||
*Die Punkte liegen auf dem Graphen der Funktion f: x -> ½ x<sup>3</sup>. | *Die Punkte liegen auf dem Graphen der Funktion f: x -> ½ x<sup>3</sup>. | ||
</popup> | </popup> | ||
Zeile 43: | Zeile 45: | ||
=== <big>Allgemein</big> === | === <big>Allgemein</big> === | ||
− | + | ||
− | <div class="lueckentext-quiz"> Ist der Graph einer Funktion f '''punktsymmetrisch zum Ursprung''',<br /> | + | <div class="lueckentext-quiz"> |
+ | Ist der Graph einer Funktion f '''punktsymmetrisch zum Ursprung''',<br /> | ||
so besitzen '''gleich weit vom Ursprung entfernte''' x- Werte immer den '''betragsgleichen''' Funktionswert mit '''unterschiedlichem''' Vorzeichen.<br /> | so besitzen '''gleich weit vom Ursprung entfernte''' x- Werte immer den '''betragsgleichen''' Funktionswert mit '''unterschiedlichem''' Vorzeichen.<br /> | ||
Es gilt also: f (x) = - f (-x)<br /> | Es gilt also: f (x) = - f (-x)<br /> | ||
Zeile 54: | Zeile 57: | ||
</div> | </div> | ||
− | + | <br /> | |
− | Welche weiteren Funktionen kennst du, deren Graph punktsymmetrisch zum '''<span style="color: #551A8B ">Ursprung</span>''' verläuft?<br /> | + | <br /> |
+ | <big>Welche weiteren Funktionen kennst du, deren Graph punktsymmetrisch zum '''<span style="color: #551A8B ">Ursprung</span>''' verläuft?<br /> | ||
Überlege dir, wie der Graph einer solchen Funktion aussehen muss und<br /> | Überlege dir, wie der Graph einer solchen Funktion aussehen muss und<br /> | ||
− | worauf es im Funktionsterm ankommt.<br /> | + | worauf es im Funktionsterm ankommt.<br /></big> |
<br /> | <br /> | ||
Zeile 73: | Zeile 77: | ||
Es dürfen nur ungerade Exponenten im Funktionsterm auftauchen, also x<sup>1</sup>, x<sup>3</sup>, x<sup>5</sup>, ...<br /> | Es dürfen nur ungerade Exponenten im Funktionsterm auftauchen, also x<sup>1</sup>, x<sup>3</sup>, x<sup>5</sup>, ...<br /> | ||
− | Eine Funktion, die nur ungerade Exponenten enthält, nennt man '''ungerade Funktion'''.<br /> | + | Eine Funktion, die nur ungerade Exponenten enthält, nennt man '''<colorize>ungerade Funktion</colorize>'''.<br /> |
+ | </popup> | ||
+ | <br /> | ||
<br /> | <br /> | ||
− | |||
''Auch das lässt sich rechnerisch erklären:''<br /> | ''Auch das lässt sich rechnerisch erklären:''<br /> | ||
Die Beziehung f (x) = - f (-x), bzw. '''f (-x) = - f (x)''' muss für alle x- Werte gelten.<br /> | Die Beziehung f (x) = - f (-x), bzw. '''f (-x) = - f (x)''' muss für alle x- Werte gelten.<br /> | ||
− | Setzt man negative x- Werte in die Funktionsgleichung ein, muss | + | Setzt man negative x- Werte in die Funktionsgleichung ein, muss das den gleichen Funktionswert, aber mit verkehrtem Vorzeichen, ergeben:<br /> |
Z. B.: f (x) = -x<sup>5</sup> + x<sup>3</sup><br /> | Z. B.: f (x) = -x<sup>5</sup> + x<sup>3</sup><br /> | ||
f (-x) <br /> | f (-x) <br /> | ||
Zeile 86: | Zeile 91: | ||
= - f (x)<br /> | = - f (x)<br /> | ||
− | Bereits ein gerader Exponent sorgt für ein falsches Vorzeichen. <br /> | + | Bereits '''ein''' gerader Exponent sorgt für ein falsches Vorzeichen. <br /> |
In diesem Fall läge keine Punktsymmetrie zum Ursprung vor. | In diesem Fall läge keine Punktsymmetrie zum Ursprung vor. | ||
Zeile 92: | Zeile 97: | ||
|<ggb_applet width="453" height="393" version="4.2" ggbBase64="UEsDBBQACAAIAJhWvUIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAJhWvUIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1szVhtb9s2EP6c/oqDPgwrFtukSL11doduaLEC6VYs3TDswwBaom0usqSJdGIP/fE7kpItO02RJtu6JDZF8nh3z8Pj8ZTpN9t1Cdey1aquZgEdkwBkldeFqpazYGMWozT45vmT6VLWSzlvBSzqdi3MLODjMDisw96YJ3axKmZBEnMuEhKPEiLkiEuajEREihGZF2mYkDDkURoAbLV6VtU/iLXUjcjlZb6Sa3FR58I4nStjmmeTyc3Nzbi3Pq7b5WS5nI+3uggAPa/0LOgenqG6o0U3zImHhNDJr28uvPqRqrQRVS4DsKg26vmTs+mNqor6Bm5UYVaIJUVkK6mWK4QZUexMrFCDWBuZG3UtNS4ddB1ms24CJyYqO3/mn6DcwwmgUNeqkO0sIGNOecaSJMoYi0mWxQHUrZKV6WRpZ3PSa5teK3nj1donZ5GTLMEtUFrNSzkLFqLUiEpVixYZRYfaDXa12ZVyLtq+f/CHnuMvCqi/pNWFW+dpmAVxFp/TJD1PCDmP0s6XoeEATF2XTiuBKIP37yEkIYFz21DfhNjEsZ8ifoww34S+4b6JvAz3y7kX5V6GexnOPoKz6x+AdgNHSHucbIiTIj77ifHjCDjBmQ5wUgviPVDrvWsYWL+p8982vOvGvpu4hhLf0G4ytV+Or/iRiNiDENGBVR8Pdxu9FS/7WInY/S2Gj8K5Rxl+CGUY3YHykeT2Rmk0MIq23J/73DLJPgnnndR+gsWYP+bsP8BgQv4Lg9NJn+mm3dkDvbKyXbgaudY267DMJR6gEOHBjBPMExHQDJvEHtAQaAQ8wi5NIbZtAsyeSQ4MUrBylIFLL1GKX9yd1xgi1GUHE39wgXGIGFCXlDhgKgKX2DDJhQwloggiXGStU2uWxcBj7LAUODpoU1pi0wbDddhH4yEwCsyupQmEMcQhJDYtUm6zZZxa31FpCDGB2C7FvIg50edDXJECs2gwwptaqz25K1k2+11xPKqq2ZiOu248Xxc9j6Y+ES/q/OrbE7Kl0KZ/RiG8jQ53nr+djq7Es2kp5rLEwuHSxgHAtSjtEXb6F3VloI+B1I8tW9GsVK4vpTG4SsMf4lpcCCO3r1Ba9w460+6mnspNXqpCieoXDBKrwiqE/cVtE1N/cbM48lbyum6Ly53GyIHtb7Kt0YEsHmfDH7xHd34qJNHRVIJTOhc25nl2vCjFTdjdMce9bXm9xya2UvdkLlt7oDr6bee1/rYuD0NNrSrznWjMpnVlGMJqLaoX1bKUjlyXWLGgya/m9fbSs8q8rne7BnvEOzBffleXdQt4JMMoQoGunfvWyVjP9lLEyRAnQfptUsV+nmahk3Dt3LdOCvfdu9YhpT1MSnozSrtEgsqHUeaCxpZHm0qZi75jVH7VIaVe/ofNeo7x1i07Vkn/IZXTyUmETa9kW8nSx1GFO7mpN9oH9j44z6YbLd8Ks3pRFT/JJR7Jt8JmRYOqvejB40Lmao0L/XhHnbDb+jO66kcLuWxlj7B0da8n1s2SYVTfGnaqXrX1+nV1/Q5j5sTV6aTHM9V5qxobmjDHNH0lD9FXKC0wyRfDdQheI4rcJhwk0lgS326qK6N3a0TaKo3BCK/sCErIKgCxMasaA+bNrlViDRfoGarGw42wM3gjFCZTDFl7qLdNK7V9j/AbB2gYk8/WZqgvt09hBqPt719GT+ErwJY9dQ7JUq6xXgbjon2xqZxr+61fuFrc7jHU8z8wRZ2ExmFHcPok+LHe7MIfRNmshK3XO3pLsZPtEeFO35u6ON6GhdrK4nTvDyfEYNa7wsIeIw/PoukOrHv4XhWFdDndh6OH+WGWlh1LS88SkkORpZF9yDq2kj1rdvw+zC0fwRy1CbhLLffl7sfFQksD21kwCjNMqNhS/vm5XXXcrvbceirvQ+HqQRT2+ZmS8BPD70Ah6wikn5/ApiOw8QRqVeHDfdhrHsWev7ki+gDy8KLy7MWfmb1Z8E5uDe0I/OLPTW2+3vrmAwRiuWSC44UfJ3Bwcd0+wuRfSX3aiNa8tVUNWKb5OMH3xcNPGHnmyZiFw3GOCeEv/0+pe1EWHlG2uz9l4f+eMstNdFRixo4zNk6Ph+9iLK/Xa1EVULn3tdeVrU4QaHB4VxDEXbyCuptFhPv6pN6Yfv6FV9spu0WsK1z3rL14GKs0TAe8ut6n3yU0cfRw9kHiw0ERpf3dM2YpJTGPE5omjJMsfTmiXVjSMeNZxpIwTOI4ZpSylyPOh0SfTR1yW4h7A9Fw9KRKG+7KZFhYufec7j+dz/8GUEsHCGg7mqarBgAAmRUAAFBLAQIUABQACAAIAJhWvULWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAmFa9Qmg7mqarBgAAmRUAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABCBwAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> | |<ggb_applet width="453" height="393" version="4.2" ggbBase64="UEsDBBQACAAIAJhWvUIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAJhWvUIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1szVhtb9s2EP6c/oqDPgwrFtukSL11doduaLEC6VYs3TDswwBaom0usqSJdGIP/fE7kpItO02RJtu6JDZF8nh3z8Pj8ZTpN9t1Cdey1aquZgEdkwBkldeFqpazYGMWozT45vmT6VLWSzlvBSzqdi3MLODjMDisw96YJ3axKmZBEnMuEhKPEiLkiEuajEREihGZF2mYkDDkURoAbLV6VtU/iLXUjcjlZb6Sa3FR58I4nStjmmeTyc3Nzbi3Pq7b5WS5nI+3uggAPa/0LOgenqG6o0U3zImHhNDJr28uvPqRqrQRVS4DsKg26vmTs+mNqor6Bm5UYVaIJUVkK6mWK4QZUexMrFCDWBuZG3UtNS4ddB1ms24CJyYqO3/mn6DcwwmgUNeqkO0sIGNOecaSJMoYi0mWxQHUrZKV6WRpZ3PSa5teK3nj1donZ5GTLMEtUFrNSzkLFqLUiEpVixYZRYfaDXa12ZVyLtq+f/CHnuMvCqi/pNWFW+dpmAVxFp/TJD1PCDmP0s6XoeEATF2XTiuBKIP37yEkIYFz21DfhNjEsZ8ifoww34S+4b6JvAz3y7kX5V6GexnOPoKz6x+AdgNHSHucbIiTIj77ifHjCDjBmQ5wUgviPVDrvWsYWL+p8982vOvGvpu4hhLf0G4ytV+Or/iRiNiDENGBVR8Pdxu9FS/7WInY/S2Gj8K5Rxl+CGUY3YHykeT2Rmk0MIq23J/73DLJPgnnndR+gsWYP+bsP8BgQv4Lg9NJn+mm3dkDvbKyXbgaudY267DMJR6gEOHBjBPMExHQDJvEHtAQaAQ8wi5NIbZtAsyeSQ4MUrBylIFLL1GKX9yd1xgi1GUHE39wgXGIGFCXlDhgKgKX2DDJhQwloggiXGStU2uWxcBj7LAUODpoU1pi0wbDddhH4yEwCsyupQmEMcQhJDYtUm6zZZxa31FpCDGB2C7FvIg50edDXJECs2gwwptaqz25K1k2+11xPKqq2ZiOu248Xxc9j6Y+ES/q/OrbE7Kl0KZ/RiG8jQ53nr+djq7Es2kp5rLEwuHSxgHAtSjtEXb6F3VloI+B1I8tW9GsVK4vpTG4SsMf4lpcCCO3r1Ba9w460+6mnspNXqpCieoXDBKrwiqE/cVtE1N/cbM48lbyum6Ly53GyIHtb7Kt0YEsHmfDH7xHd34qJNHRVIJTOhc25nl2vCjFTdjdMce9bXm9xya2UvdkLlt7oDr6bee1/rYuD0NNrSrznWjMpnVlGMJqLaoX1bKUjlyXWLGgya/m9fbSs8q8rne7BnvEOzBffleXdQt4JMMoQoGunfvWyVjP9lLEyRAnQfptUsV+nmahk3Dt3LdOCvfdu9YhpT1MSnozSrtEgsqHUeaCxpZHm0qZi75jVH7VIaVe/ofNeo7x1i07Vkn/IZXTyUmETa9kW8nSx1GFO7mpN9oH9j44z6YbLd8Ks3pRFT/JJR7Jt8JmRYOqvejB40Lmao0L/XhHnbDb+jO66kcLuWxlj7B0da8n1s2SYVTfGnaqXrX1+nV1/Q5j5sTV6aTHM9V5qxobmjDHNH0lD9FXKC0wyRfDdQheI4rcJhwk0lgS326qK6N3a0TaKo3BCK/sCErIKgCxMasaA+bNrlViDRfoGarGw42wM3gjFCZTDFl7qLdNK7V9j/AbB2gYk8/WZqgvt09hBqPt719GT+ErwJY9dQ7JUq6xXgbjon2xqZxr+61fuFrc7jHU8z8wRZ2ExmFHcPok+LHe7MIfRNmshK3XO3pLsZPtEeFO35u6ON6GhdrK4nTvDyfEYNa7wsIeIw/PoukOrHv4XhWFdDndh6OH+WGWlh1LS88SkkORpZF9yDq2kj1rdvw+zC0fwRy1CbhLLffl7sfFQksD21kwCjNMqNhS/vm5XXXcrvbceirvQ+HqQRT2+ZmS8BPD70Ah6wikn5/ApiOw8QRqVeHDfdhrHsWev7ki+gDy8KLy7MWfmb1Z8E5uDe0I/OLPTW2+3vrmAwRiuWSC44UfJ3Bwcd0+wuRfSX3aiNa8tVUNWKb5OMH3xcNPGHnmyZiFw3GOCeEv/0+pe1EWHlG2uz9l4f+eMstNdFRixo4zNk6Ph+9iLK/Xa1EVULn3tdeVrU4QaHB4VxDEXbyCuptFhPv6pN6Yfv6FV9spu0WsK1z3rL14GKs0TAe8ut6n3yU0cfRw9kHiw0ERpf3dM2YpJTGPE5omjJMsfTmiXVjSMeNZxpIwTOI4ZpSylyPOh0SfTR1yW4h7A9Fw9KRKG+7KZFhYufec7j+dz/8GUEsHCGg7mqarBgAAmRUAAFBLAQIUABQACAAIAJhWvULWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAmFa9Qmg7mqarBgAAmRUAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABCBwAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> | ||
− | + | ||
</td></tr></table></center> | </td></tr></table></center> | ||
</div> | </div> |
Version vom 7. Juni 2013, 19:25 Uhr
|
AllgemeinIst der Graph einer Funktion f punktsymmetrisch zum Ursprung,
Überlege dir, wie der Graph einer solchen Funktion aussehen muss und
Bereits ein gerader Exponent sorgt für ein falsches Vorzeichen. |width="1%"| | |
Übung
Manipulationen an Funktionen |