Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.
Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.
Gerne kannst Du natürlich weiterarbeiten
im neuen Projektwiki (projekte.zum.de).Punktsymmetrie zum Ursprung: Unterschied zwischen den Versionen
(→Übung) |
|||
Zeile 5: | Zeile 5: | ||
<center><table border="0" width="800px" cellpadding=5 cellspacing=15> | <center><table border="0" width="800px" cellpadding=5 cellspacing=15> | ||
<tr><td width="800px" valign="top"> | <tr><td width="800px" valign="top"> | ||
− | + | <big>Spiegle die Punkte '''<span style="color:#008B00 ">A</span>''', '''<span style="color: #008B00 ">B</span>''', '''<span style="color: #008B00 ">C</span>''', '''<span style="color: #008B00 ">D</span>''' und '''<span style="color: #008B00 ">E</span>''' im Applet am '''<span style="color: #551A8B">Koordinatenursprung</span>''':<br /> | |
− | + | ||
<br /> | <br /> | ||
Achte dabei auf die Kooordinaten der Spiegelpunkte.<br /> | Achte dabei auf die Kooordinaten der Spiegelpunkte.<br /> | ||
Zeile 13: | Zeile 12: | ||
<br /> | <br /> | ||
Verbinde die Punkte zu einem Funktionsgraphen.<br /> | Verbinde die Punkte zu einem Funktionsgraphen.<br /> | ||
− | Um welche Funktion handelt es sich hier?<br /> | + | Um welche Funktion handelt es sich hier?<br /></big> |
<br /> | <br /> | ||
− | + | {| | |
− | <popup name="Hilfe zu GeoGebra"> | + | | valign=top width="400"|<popup name="Hilfe zu GeoGebra"> |
*Auch für die Punktspiegelung gibt es ein Symbol in der Werkzeugleiste: "Spiegle Objekt an Punkt" | *Auch für die Punktspiegelung gibt es ein Symbol in der Werkzeugleiste: "Spiegle Objekt an Punkt" | ||
**Du kannst es unter dem Symbol für Achsenspiegelung auswählen. | **Du kannst es unter dem Symbol für Achsenspiegelung auswählen. | ||
Zeile 25: | Zeile 24: | ||
|width="0,5%"| | |width="0,5%"| | ||
− | |<ggb_applet width="580" height="797" version="4.2" ggbBase64="UEsDBBQACAAIADlMvUIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIADlMvUIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1VhZc9s2EH52fsUOny0JB8+MlIyTtjOZsdNMnXTSvkEkRCHmNSR0ZfLjuwBISZZz1HbSTB1LOLjYxffh2wWd6fNtWcBatp2qq5lHx8QDWaV1pqp85q30YhR7z589meayzuW8FbCo21LomeePmXdYh6OxH5nFKpt5fLGgYSyCUSCiYOQTGoziVMxHLImCOQ0XNJbCA9h26mlVvxal7BqRyut0KUtxWadCW59LrZunk8lmsxkP0cd1m0/yfD7edpkHuPOqm3l95ym6u7Vow605I4RO3l9dOvcjVXVaVKn0wKBaqWdPzqYbVWX1BjYq08uZF5LEg6VU+RJhxmHowcQYNYi1kalWa9nh0qOhxazLxrNmojLPz1wPij0cDzK1VplsZx4Zcxb7JGLMT4I48RPqQd0qWenelvYxJ4O36VrJjXNrejaiT5IIj0B1al7ImbcQRYeoVLVokVHcULvCYad3hZyLdhgf9kPP8R8aqI/S+MKjczQgASE/x62dR4ScBwFxezkO7IGu68J6JRAk8OkTMMIInJuGuoZhE4buEXFzhLuGucZ3TeBsfLfcd6a+s/Gdjc+/grMfH4D2E7eQDjj5MU6K+MwnxI8l4ARnfISTGhCfgJrd24aD2Te1+zeN3w9DN4xsQ4lraP8wNl+Wr/CRiPiDENGjqE4PXw56Ry9DxCC+R0T2KJx7lOxzKFnwBZSPJHcISoOjoBjL/trPnZD8Xji/SO09Iob+Y3L/AQEj8l8EnE6GSjftcw+6pbHt5apl2ZmqwxNbeIBCgIkZRlgnAqAJNpFJUAY0AD/AIY0hNG0E3OSkDxxiMHaUgy0vQYxfvs3XEAL0ZSYjl7jAfQg4UFuUfMBSBLawYZFjHC2CAAJcZKJTE5aH4Ic44DH4uEFT0iJTNjiuwzEGZ8ApcLOWRsBCCBlEpixS31TLMDZ7R6cMQgKhWYp1EWuiq4e4IgZu0KDCm7pTe3KXsmj2p2J5VFWz0j13/XxaZgOPuj4xz+r05sUJ2VJ0euijEd5GhzvP3U63rsSzaSHmssAXh2ujA4C1KEwKW/+LutIwaCB2c3krmqVKu2upNa7q4INYi0uh5fY3tO6GDdrQ9qaeylVaqEyJ6k8UiXFhHMJwcdvCNFzcEU1clLSu2+x616FyYPu3bGusJhEZMx/vmpiRAG94Gniwc494xMcR8yl+QvwKI7xiu1QYzUfhOCFh7PPIT8wPnsHuziMUMt4UoQst13toYiu7gcu8Vdlx/1X3oi6y/Xk0tar0S9HoVWtfwrAItgbTRZUX0lJryyq+zqQ383p77TjlztfbXYMj4uLP85d1UbeACckCxJj37dy11sZsbG9FrA2xFmQ4JJXtn9OEWQvbzl1rrfDU3dZ6oHRASckQRnW2jKDzY41Zycy8rQerSulLN0J9qvSmh0rdgterco5y69fd9kk/63P3EJ9m1/ii1un35jUt8Gz/r6P+26XUwo4ZD5I4igL8ZkkcO52eKHR6I9tKFk6HFUphVa86lxh7cZ9NV518I/Tyosr+kDmm9BthqqrGrTnTw/YymaoSF7p5v+fBCOMdQnWzmcxbOVBU2PdmdzT2KTnOijvT1tVvbV2+qtZvUXUnW51OBjzTLm1VY7QNcyzzN/KgX2RJ4CWRHa9D8B2iSE3BwoPQ5hDerKob3TVK5rJYoR9VwjusJy32PRArvaxRcVe7VokSLoWZzLA2oHQTuBIKazFq3rouS1FlUNmL6FVlaMOa5B2KoCAosAsUC7qlqAvbtXDrlR4MLhy+3pupNYUs8Y0ctM0om5R7aV1Y70ZCUM8/YLQT6R0ODB8fsofFR/llR6JollZNPf+F2Mn21olYj78vFp3UsLX5BLtDWtmnV3XWnyLti63ayuxUOvbEO+PDRDNORrbz0f3V5/7GMShNQXGLo+PZE62g1B1B36DqxYOocoWIkqEU3Z+oEU8sSBY9gqmRTfueqpAFX2WLfwe2Xv4stiLfsZU8hi16ENaPp+qX/zlVvbDoOIyjH8/Wrz8tDfl3SEM2CMv/RsX6t1RNji8k+37Z/w/Ts38AUEsHCAw2aLcDBgAAERMAAFBLAQIUABQACAAIADlMvULWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAOUy9Qgw2aLcDBgAAERMAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACaBgAAAAA=" showResetIcon = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "true" showToolBarHelp = "true" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> | + | |<ggb_applet width="580" height="797" version="4.2" ggbBase64="UEsDBBQACAAIADlMvUIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIADlMvUIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1VhZc9s2EH52fsUOny0JB8+MlIyTtjOZsdNMnXTSvkEkRCHmNSR0ZfLjuwBISZZz1HbSTB1LOLjYxffh2wWd6fNtWcBatp2qq5lHx8QDWaV1pqp85q30YhR7z589meayzuW8FbCo21LomeePmXdYh6OxH5nFKpt5fLGgYSyCUSCiYOQTGoziVMxHLImCOQ0XNJbCA9h26mlVvxal7BqRyut0KUtxWadCW59LrZunk8lmsxkP0cd1m0/yfD7edpkHuPOqm3l95ym6u7Vow605I4RO3l9dOvcjVXVaVKn0wKBaqWdPzqYbVWX1BjYq08uZF5LEg6VU+RJhxmHowcQYNYi1kalWa9nh0qOhxazLxrNmojLPz1wPij0cDzK1VplsZx4Zcxb7JGLMT4I48RPqQd0qWenelvYxJ4O36VrJjXNrejaiT5IIj0B1al7ImbcQRYeoVLVokVHcULvCYad3hZyLdhgf9kPP8R8aqI/S+MKjczQgASE/x62dR4ScBwFxezkO7IGu68J6JRAk8OkTMMIInJuGuoZhE4buEXFzhLuGucZ3TeBsfLfcd6a+s/Gdjc+/grMfH4D2E7eQDjj5MU6K+MwnxI8l4ARnfISTGhCfgJrd24aD2Te1+zeN3w9DN4xsQ4lraP8wNl+Wr/CRiPiDENGjqE4PXw56Ry9DxCC+R0T2KJx7lOxzKFnwBZSPJHcISoOjoBjL/trPnZD8Xji/SO09Iob+Y3L/AQEj8l8EnE6GSjftcw+6pbHt5apl2ZmqwxNbeIBCgIkZRlgnAqAJNpFJUAY0AD/AIY0hNG0E3OSkDxxiMHaUgy0vQYxfvs3XEAL0ZSYjl7jAfQg4UFuUfMBSBLawYZFjHC2CAAJcZKJTE5aH4Ic44DH4uEFT0iJTNjiuwzEGZ8ApcLOWRsBCCBlEpixS31TLMDZ7R6cMQgKhWYp1EWuiq4e4IgZu0KDCm7pTe3KXsmj2p2J5VFWz0j13/XxaZgOPuj4xz+r05sUJ2VJ0euijEd5GhzvP3U63rsSzaSHmssAXh2ujA4C1KEwKW/+LutIwaCB2c3krmqVKu2upNa7q4INYi0uh5fY3tO6GDdrQ9qaeylVaqEyJ6k8UiXFhHMJwcdvCNFzcEU1clLSu2+x616FyYPu3bGusJhEZMx/vmpiRAG94Gniwc494xMcR8yl+QvwKI7xiu1QYzUfhOCFh7PPIT8wPnsHuziMUMt4UoQst13toYiu7gcu8Vdlx/1X3oi6y/Xk0tar0S9HoVWtfwrAItgbTRZUX0lJryyq+zqQ383p77TjlztfbXYMj4uLP85d1UbeACckCxJj37dy11sZsbG9FrA2xFmQ4JJXtn9OEWQvbzl1rrfDU3dZ6oHRASckQRnW2jKDzY41Zycy8rQerSulLN0J9qvSmh0rdgterco5y69fd9kk/63P3EJ9m1/ii1un35jUt8Gz/r6P+26XUwo4ZD5I4igL8ZkkcO52eKHR6I9tKFk6HFUphVa86lxh7cZ9NV518I/Tyosr+kDmm9BthqqrGrTnTw/YymaoSF7p5v+fBCOMdQnWzmcxbOVBU2PdmdzT2KTnOijvT1tVvbV2+qtZvUXUnW51OBjzTLm1VY7QNcyzzN/KgX2RJ4CWRHa9D8B2iSE3BwoPQ5hDerKob3TVK5rJYoR9VwjusJy32PRArvaxRcVe7VokSLoWZzLA2oHQTuBIKazFq3rouS1FlUNmL6FVlaMOa5B2KoCAosAsUC7qlqAvbtXDrlR4MLhy+3pupNYUs8Y0ctM0om5R7aV1Y70ZCUM8/YLQT6R0ODB8fsofFR/llR6JollZNPf+F2Mn21olYj78vFp3UsLX5BLtDWtmnV3XWnyLti63ayuxUOvbEO+PDRDNORrbz0f3V5/7GMShNQXGLo+PZE62g1B1B36DqxYOocoWIkqEU3Z+oEU8sSBY9gqmRTfueqpAFX2WLfwe2Xv4stiLfsZU8hi16ENaPp+qX/zlVvbDoOIyjH8/Wrz8tDfl3SEM2CMv/RsX6t1RNji8k+37Z/w/Ts38AUEsHCAw2aLcDBgAAERMAAFBLAQIUABQACAAIADlMvULWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAOUy9Qgw2aLcDBgAAERMAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACaBgAAAAA=" showResetIcon = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "true" showToolBarHelp = "true" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" useLocalJar="true"/> |
+ | |} | ||
<br /> | <br /> | ||
− | < | + | <iframe src="http://LearningApps.org/watch?v=pq4kbmcq5" style="border:0px;width:100%;height:590px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | </ | + | |
− | + | ||
</td></tr></table></center> | </td></tr></table></center> | ||
</div> | </div> | ||
Zeile 59: | Zeile 52: | ||
<br /> | <br /> | ||
<br /> | <br /> | ||
− | <big>Welche weiteren Funktionen kennst du, deren Graph punktsymmetrisch zum '''<span style="color: #551A8B ">Ursprung</span>''' | + | <big>Welche weiteren Funktionen kennst du, deren Graph punktsymmetrisch zum '''<span style="color: #551A8B ">Ursprung</span>''' verläuft?<br /> |
Überlege dir, wie der Graph einer solchen Funktion aussehen muss und worauf es im Funktionsterm ankommt.<br /> | Überlege dir, wie der Graph einer solchen Funktion aussehen muss und worauf es im Funktionsterm ankommt.<br /> | ||
<br /> | <br /> | ||
Zeile 65: | Zeile 58: | ||
Stelle sie so ein, dass '''f''' '''<span style="color: #551A8B ">punktsymmetrisch zum Ursprung</span>''' verläuft.<br /> | Stelle sie so ein, dass '''f''' '''<span style="color: #551A8B ">punktsymmetrisch zum Ursprung</span>''' verläuft.<br /> | ||
</big> | </big> | ||
− | + | <center><ggb_applet width="580" height="463" version="4.2" ggbBase64="UEsDBBQACAAIAJulx0IAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACbpcdCAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVa647buBX+PfsUhH4USXfGFkVRslM7i0mAxaaYbINOtli0aABaom3u6OKVqBk5yAv0KfpufZIeXiRbtsdjx7PNpDuJTZHi7XzfOR9JyaPv6jRBt7woRZ6NHdxzHcSzKI9FNhs7lZxeDJzvXn4zmvF8xicFQ9O8SJkcO37Pc1btINfzQ9VYxGOHBhzHzA0vSIzjCz+MyAXjZHAxHMQ0HhIaYD92EKpL8SLLf2QpLxcs4tfRnKfsKo+Y1H3OpVy86Pfv7u56zei9vJj1Z7NJry6hA5h5Vo4de/ECuus0uiO6uue6uP/z2yvT/YXISsmyiDtIWVWJl9+cje5EFud36E7Ecg6zHw4dNOdiNgczaeg7qK8qLcDWBY+kuOUlNF3LaptlunB0NZap+2fmCiWtOQ6Kxa2IeTF23B4OqTf0MCV0MCSYUsAyLwTPpK2M7aD9prvRreB3pl91pYf03WEIHIhSTBI+dqYsKcEskU0LgBRmVFSQLeUy4RNWNPnVhPA5/IMK4iNXfQF3Bgcwmg7OsUvOQ9c9p9Q1c1kf2EEyzxPdq4voEH36hDzXc9G5SrBJPEiCwNxyTZlLTOKZxDcJNXV809w3VX1Txzd1fLLHTptfGWoLOpY2dpJ1OzHYpz4BfDQAG3YO1uzEyohPCKvZ64QgNW+s568S32YDkw11gl2TYHtzoL40XsGJFpHPsgivjWr84f5Bt/ylGZEOjhjRO8nO1krs0u0xPXqPlSeC2w5K14MCYkH915+tIclRdt4L7REjBv4psf8ZA4ZuJ+ybmDcptuk+GB5tUqN+o4YjOyFUzlVd69KSp6WaIhlqcUIYUQjeIAQtoQgPIQlVEHsIU+RTyOIBClQaIqLi1kcEDZCqhwnSEkQH8OXrmA4Qhb5UYWiCGxEfUYKwFi4fAQpIix9g4hGoQSmi0EiNjtWwJEB+ABkyQD5MUMleqKSFQDvIw+AeIhgR1RaHyAtQ4KFQSSf2laIGAzV36NRDgYsC1RS0E3TTaCa0GCCirIEoWOSlaMGd82TRsqJxFNmikhY7Wx6lcYOjzDeqx3l082oDbM5K2VxDJVixVgujWcE66+bZKGETnsDu4lr5AUK3LFFhrvuf5plEjQ8EpmxWsMVcROU1lxJalegXdsuumOT191C7bCaoh9bL+YhXUSJiwbK/gZOoLlSHqF3dlXg1q7tPqBklyvMivl6W4Dmo/jsvcpjAAPYz63+gRUtzi2C91SkjptzcH/aG63+waizvuWUG47etMazmZYPerBDx+vWb8lWexC0Di1xk8jVbyKrQezOYTqGsuMxmCddgarGFXU50M8nra4MiMX29Xy4g55rxJ7PXeZIXCELQoyCrM5tOTKrrqIm1tVxdx9U13IYWEbf38dDTNXQ6MamuBTybqVlDcWMldpthRKnFRcG55lXaScZO7aAqE/LK5MAjRXRjTcWmwY9VOgEHs+26feKdfS6P73PU3/Cp0Q0vMp4Yz8mAyiqvSuPKrTuejaqSv2NyfpnFf+UzCMJ3TOmghK5N1dWUYx6JFBqacgseU8T+BFM1pTGfFbwxMdHbYQOtvuuu+/FWse7q+yJP32S378FrNqY66jf2jMqoEAvlm2gCwnzDV/4Xi5KBrMfr7cD4EqyIlMQAkFKB+K7KbmS5TMFS2NGij1WKfgIFKKps5iBWyXkOHvN2WQiWoiumCmOIZlhe0J+BF1BP8FkVxQlPYT+MpPbcrEp5IaKWRK732mBFZQ1VBxdtqiIQ5ZNfQHE2iF/BDbe3IoBiEwAuLKssWcyZ3qZbN2ZLXnQA1V2+zeNmdDt2ovb3KBWZduiU1dqn2KTMk0rCAQcIzFYHHDM7q0vEVZJSK82g6moJcwn0cWwqat4KA6AnPoLLdf1nFWcStPIGjgylFgNpw15f/CDimGftZFkGLqeJA9VbGOdfcG7ipm24ANu13Kw5i6XmQZLiRycJe6EVoS/MkTnrKo48+lVzFD0aR2aR0PHzBBgiw/D/JIomj8wQpqRd6r8wR/6gjaLwq+aIPZ7SeU0caZKCLx1H3te0GtWLAsZSnViMp3A+qdUh5ln9HI3RM4b+iOrnH575z9G36NnE5ojORTbnqVysMpDaQ02X/WmV6R2Psxrm88PR3ZJL90CabakmZHNDuZMCuo+C/UC+57XEFsw//Frl8k8WUpNR+F2x9/znf0z/qeAzpeZ7F4JwepNOt+/9CK7tqv9XEIpSW7RZrM+oJUT/tH2gASettyrk/eb5RWifcqxCUbJCvlMHOKSC6sLr+Z2jJQ51iF3gHsT/2p8PXX5s1eRhirwORaj+4FsODqDAO5wC2PbHwgQrVP+Lrc3Qf/71b4SP07QnzpTXI76mxu2F3YcBwXHMkA4z3wI15HBqyKnUTO6jZt+W4IlTQ3ou7TxcCRqicKeYHEeU3yWq/uAdzpN/Kk/Rfp52ba6fOEv+BksDS1LQ4Ugdvo8hiW5G0+Ec0VM5iu+VuT2H1CfOEu3hjrqply2aJhp2ePKOoynYoAkfTlNwKk38IZp2PvB54jwFPbdRua72DY8MoHDHXu5wcsLf1W4NsCYdCRs2GuYftiOI8jRlWYwy/RZMd6wBNG9fmDt2lpe1KC1glWxKL01HtvkWLfqFQIv55TYnzYvNfYcQ7DWiRU/fAmwe4tSRdesYh3cd4+yT69LgbQ6cgUpXiJ6NtMHqvUbnpZEp3Xjk/RjwvzoG/ldPEP5TwKe/CfhXcCzdwP4S7MUW7A78s/3wqxNuC+7sIfTvUSTsemuadNJSsIIQWwhdC+Gqq12Hcn//cxH+a2aaWIkS6SIRkZCPh/P8CJznv3ucdy+ng85yujx8JR18eUDXl8jmhyrNGuk2a6T74BrpdneKfmBlZLi+SOJ7N5Bd/32TqbekAMeGE9daqLUj79bs18do9uvP28b8Js7c6O6F+4DwBgcKb3/93az+cYT9DeXL/wJQSwcI1EdJaKQIAADzKQAAUEsBAhQAFAAIAAgAm6XHQkXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACACbpcdC1EdJaKQIAADzKQAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAADwJAAAAAA==" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" useLocalJar="true"/></center> | |
− | < | + | |
− | <ggb_applet width="580" height="463" version="4.2" ggbBase64="UEsDBBQACAAIAJulx0IAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACbpcdCAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVa647buBX+PfsUhH4USXfGFkVRslM7i0mAxaaYbINOtli0aABaom3u6OKVqBk5yAv0KfpufZIeXiRbtsdjx7PNpDuJTZHi7XzfOR9JyaPv6jRBt7woRZ6NHdxzHcSzKI9FNhs7lZxeDJzvXn4zmvF8xicFQ9O8SJkcO37Pc1btINfzQ9VYxGOHBhzHzA0vSIzjCz+MyAXjZHAxHMQ0HhIaYD92EKpL8SLLf2QpLxcs4tfRnKfsKo+Y1H3OpVy86Pfv7u56zei9vJj1Z7NJry6hA5h5Vo4de/ECuus0uiO6uue6uP/z2yvT/YXISsmyiDtIWVWJl9+cje5EFud36E7Ecg6zHw4dNOdiNgczaeg7qK8qLcDWBY+kuOUlNF3LaptlunB0NZap+2fmCiWtOQ6Kxa2IeTF23B4OqTf0MCV0MCSYUsAyLwTPpK2M7aD9prvRreB3pl91pYf03WEIHIhSTBI+dqYsKcEskU0LgBRmVFSQLeUy4RNWNPnVhPA5/IMK4iNXfQF3Bgcwmg7OsUvOQ9c9p9Q1c1kf2EEyzxPdq4voEH36hDzXc9G5SrBJPEiCwNxyTZlLTOKZxDcJNXV809w3VX1Txzd1fLLHTptfGWoLOpY2dpJ1OzHYpz4BfDQAG3YO1uzEyohPCKvZ64QgNW+s568S32YDkw11gl2TYHtzoL40XsGJFpHPsgivjWr84f5Bt/ylGZEOjhjRO8nO1krs0u0xPXqPlSeC2w5K14MCYkH915+tIclRdt4L7REjBv4psf8ZA4ZuJ+ybmDcptuk+GB5tUqN+o4YjOyFUzlVd69KSp6WaIhlqcUIYUQjeIAQtoQgPIQlVEHsIU+RTyOIBClQaIqLi1kcEDZCqhwnSEkQH8OXrmA4Qhb5UYWiCGxEfUYKwFi4fAQpIix9g4hGoQSmi0EiNjtWwJEB+ABkyQD5MUMleqKSFQDvIw+AeIhgR1RaHyAtQ4KFQSSf2laIGAzV36NRDgYsC1RS0E3TTaCa0GCCirIEoWOSlaMGd82TRsqJxFNmikhY7Wx6lcYOjzDeqx3l082oDbM5K2VxDJVixVgujWcE66+bZKGETnsDu4lr5AUK3LFFhrvuf5plEjQ8EpmxWsMVcROU1lxJalegXdsuumOT191C7bCaoh9bL+YhXUSJiwbK/gZOoLlSHqF3dlXg1q7tPqBklyvMivl6W4Dmo/jsvcpjAAPYz63+gRUtzi2C91SkjptzcH/aG63+waizvuWUG47etMazmZYPerBDx+vWb8lWexC0Di1xk8jVbyKrQezOYTqGsuMxmCddgarGFXU50M8nra4MiMX29Xy4g55rxJ7PXeZIXCELQoyCrM5tOTKrrqIm1tVxdx9U13IYWEbf38dDTNXQ6MamuBTybqVlDcWMldpthRKnFRcG55lXaScZO7aAqE/LK5MAjRXRjTcWmwY9VOgEHs+26feKdfS6P73PU3/Cp0Q0vMp4Yz8mAyiqvSuPKrTuejaqSv2NyfpnFf+UzCMJ3TOmghK5N1dWUYx6JFBqacgseU8T+BFM1pTGfFbwxMdHbYQOtvuuu+/FWse7q+yJP32S378FrNqY66jf2jMqoEAvlm2gCwnzDV/4Xi5KBrMfr7cD4EqyIlMQAkFKB+K7KbmS5TMFS2NGij1WKfgIFKKps5iBWyXkOHvN2WQiWoiumCmOIZlhe0J+BF1BP8FkVxQlPYT+MpPbcrEp5IaKWRK732mBFZQ1VBxdtqiIQ5ZNfQHE2iF/BDbe3IoBiEwAuLKssWcyZ3qZbN2ZLXnQA1V2+zeNmdDt2ovb3KBWZduiU1dqn2KTMk0rCAQcIzFYHHDM7q0vEVZJSK82g6moJcwn0cWwqat4KA6AnPoLLdf1nFWcStPIGjgylFgNpw15f/CDimGftZFkGLqeJA9VbGOdfcG7ipm24ANu13Kw5i6XmQZLiRycJe6EVoS/MkTnrKo48+lVzFD0aR2aR0PHzBBgiw/D/JIomj8wQpqRd6r8wR/6gjaLwq+aIPZ7SeU0caZKCLx1H3te0GtWLAsZSnViMp3A+qdUh5ln9HI3RM4b+iOrnH575z9G36NnE5ojORTbnqVysMpDaQ02X/WmV6R2Psxrm88PR3ZJL90CabakmZHNDuZMCuo+C/UC+57XEFsw//Frl8k8WUpNR+F2x9/znf0z/qeAzpeZ7F4JwepNOt+/9CK7tqv9XEIpSW7RZrM+oJUT/tH2gASettyrk/eb5RWifcqxCUbJCvlMHOKSC6sLr+Z2jJQ51iF3gHsT/2p8PXX5s1eRhirwORaj+4FsODqDAO5wC2PbHwgQrVP+Lrc3Qf/71b4SP07QnzpTXI76mxu2F3YcBwXHMkA4z3wI15HBqyKnUTO6jZt+W4IlTQ3ou7TxcCRqicKeYHEeU3yWq/uAdzpN/Kk/Rfp52ba6fOEv+BksDS1LQ4Ugdvo8hiW5G0+Ec0VM5iu+VuT2H1CfOEu3hjrqply2aJhp2ePKOoynYoAkfTlNwKk38IZp2PvB54jwFPbdRua72DY8MoHDHXu5wcsLf1W4NsCYdCRs2GuYftiOI8jRlWYwy/RZMd6wBNG9fmDt2lpe1KC1glWxKL01HtvkWLfqFQIv55TYnzYvNfYcQ7DWiRU/fAmwe4tSRdesYh3cd4+yT69LgbQ6cgUpXiJ6NtMHqvUbnpZEp3Xjk/RjwvzoG/ldPEP5TwKe/CfhXcCzdwP4S7MUW7A78s/3wqxNuC+7sIfTvUSTsemuadNJSsIIQWwhdC+Gqq12Hcn//cxH+a2aaWIkS6SIRkZCPh/P8CJznv3ucdy+ng85yujx8JR18eUDXl8jmhyrNGuk2a6T74BrpdneKfmBlZLi+SOJ7N5Bd/32TqbekAMeGE9daqLUj79bs18do9uvP28b8Js7c6O6F+4DwBgcKb3/93az+cYT9DeXL/wJQSwcI1EdJaKQIAADzKQAAUEsBAhQAFAAIAAgAm6XHQkXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACACbpcdC1EdJaKQIAADzKQAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAADwJAAAAAA==" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> | + | |
<br /> | <br /> | ||
<br /> | <br /> | ||
Zeile 87: | Zeile 78: | ||
|width="1%"| | |width="1%"| | ||
− | |<ggb_applet width="453" height="393" version="4.2" ggbBase64="UEsDBBQACAAIAJhWvUIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAJhWvUIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1szVhtb9s2EP6c/oqDPgwrFtukSL11doduaLEC6VYs3TDswwBaom0usqSJdGIP/fE7kpItO02RJtu6JDZF8nh3z8Pj8ZTpN9t1Cdey1aquZgEdkwBkldeFqpazYGMWozT45vmT6VLWSzlvBSzqdi3MLODjMDisw96YJ3axKmZBEnMuEhKPEiLkiEuajEREihGZF2mYkDDkURoAbLV6VtU/iLXUjcjlZb6Sa3FR58I4nStjmmeTyc3Nzbi3Pq7b5WS5nI+3uggAPa/0LOgenqG6o0U3zImHhNDJr28uvPqRqrQRVS4DsKg26vmTs+mNqor6Bm5UYVaIJUVkK6mWK4QZUexMrFCDWBuZG3UtNS4ddB1ms24CJyYqO3/mn6DcwwmgUNeqkO0sIGNOecaSJMoYi0mWxQHUrZKV6WRpZ3PSa5teK3nj1donZ5GTLMEtUFrNSzkLFqLUiEpVixYZRYfaDXa12ZVyLtq+f/CHnuMvCqi/pNWFW+dpmAVxFp/TJD1PCDmP0s6XoeEATF2XTiuBKIP37yEkIYFz21DfhNjEsZ8ifoww34S+4b6JvAz3y7kX5V6GexnOPoKz6x+AdgNHSHucbIiTIj77ifHjCDjBmQ5wUgviPVDrvWsYWL+p8982vOvGvpu4hhLf0G4ytV+Or/iRiNiDENGBVR8Pdxu9FS/7WInY/S2Gj8K5Rxl+CGUY3YHykeT2Rmk0MIq23J/73DLJPgnnndR+gsWYP+bsP8BgQv4Lg9NJn+mm3dkDvbKyXbgaudY267DMJR6gEOHBjBPMExHQDJvEHtAQaAQ8wi5NIbZtAsyeSQ4MUrBylIFLL1GKX9yd1xgi1GUHE39wgXGIGFCXlDhgKgKX2DDJhQwloggiXGStU2uWxcBj7LAUODpoU1pi0wbDddhH4yEwCsyupQmEMcQhJDYtUm6zZZxa31FpCDGB2C7FvIg50edDXJECs2gwwptaqz25K1k2+11xPKqq2ZiOu248Xxc9j6Y+ES/q/OrbE7Kl0KZ/RiG8jQ53nr+djq7Es2kp5rLEwuHSxgHAtSjtEXb6F3VloI+B1I8tW9GsVK4vpTG4SsMf4lpcCCO3r1Ba9w460+6mnspNXqpCieoXDBKrwiqE/cVtE1N/cbM48lbyum6Ly53GyIHtb7Kt0YEsHmfDH7xHd34qJNHRVIJTOhc25nl2vCjFTdjdMce9bXm9xya2UvdkLlt7oDr6bee1/rYuD0NNrSrznWjMpnVlGMJqLaoX1bKUjlyXWLGgya/m9fbSs8q8rne7BnvEOzBffleXdQt4JMMoQoGunfvWyVjP9lLEyRAnQfptUsV+nmahk3Dt3LdOCvfdu9YhpT1MSnozSrtEgsqHUeaCxpZHm0qZi75jVH7VIaVe/ofNeo7x1i07Vkn/IZXTyUmETa9kW8nSx1GFO7mpN9oH9j44z6YbLd8Ks3pRFT/JJR7Jt8JmRYOqvejB40Lmao0L/XhHnbDb+jO66kcLuWxlj7B0da8n1s2SYVTfGnaqXrX1+nV1/Q5j5sTV6aTHM9V5qxobmjDHNH0lD9FXKC0wyRfDdQheI4rcJhwk0lgS326qK6N3a0TaKo3BCK/sCErIKgCxMasaA+bNrlViDRfoGarGw42wM3gjFCZTDFl7qLdNK7V9j/AbB2gYk8/WZqgvt09hBqPt719GT+ErwJY9dQ7JUq6xXgbjon2xqZxr+61fuFrc7jHU8z8wRZ2ExmFHcPok+LHe7MIfRNmshK3XO3pLsZPtEeFO35u6ON6GhdrK4nTvDyfEYNa7wsIeIw/PoukOrHv4XhWFdDndh6OH+WGWlh1LS88SkkORpZF9yDq2kj1rdvw+zC0fwRy1CbhLLffl7sfFQksD21kwCjNMqNhS/vm5XXXcrvbceirvQ+HqQRT2+ZmS8BPD70Ah6wikn5/ApiOw8QRqVeHDfdhrHsWev7ki+gDy8KLy7MWfmb1Z8E5uDe0I/OLPTW2+3vrmAwRiuWSC44UfJ3Bwcd0+wuRfSX3aiNa8tVUNWKb5OMH3xcNPGHnmyZiFw3GOCeEv/0+pe1EWHlG2uz9l4f+eMstNdFRixo4zNk6Ph+9iLK/Xa1EVULn3tdeVrU4QaHB4VxDEXbyCuptFhPv6pN6Yfv6FV9spu0WsK1z3rL14GKs0TAe8ut6n3yU0cfRw9kHiw0ERpf3dM2YpJTGPE5omjJMsfTmiXVjSMeNZxpIwTOI4ZpSylyPOh0SfTR1yW4h7A9Fw9KRKG+7KZFhYufec7j+dz/8GUEsHCGg7mqarBgAAmRUAAFBLAQIUABQACAAIAJhWvULWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAmFa9Qmg7mqarBgAAmRUAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABCBwAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> | + | |<ggb_applet width="453" height="393" version="4.2" ggbBase64="UEsDBBQACAAIAJhWvUIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAJhWvUIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1szVhtb9s2EP6c/oqDPgwrFtukSL11doduaLEC6VYs3TDswwBaom0usqSJdGIP/fE7kpItO02RJtu6JDZF8nh3z8Pj8ZTpN9t1Cdey1aquZgEdkwBkldeFqpazYGMWozT45vmT6VLWSzlvBSzqdi3MLODjMDisw96YJ3axKmZBEnMuEhKPEiLkiEuajEREihGZF2mYkDDkURoAbLV6VtU/iLXUjcjlZb6Sa3FR58I4nStjmmeTyc3Nzbi3Pq7b5WS5nI+3uggAPa/0LOgenqG6o0U3zImHhNDJr28uvPqRqrQRVS4DsKg26vmTs+mNqor6Bm5UYVaIJUVkK6mWK4QZUexMrFCDWBuZG3UtNS4ddB1ms24CJyYqO3/mn6DcwwmgUNeqkO0sIGNOecaSJMoYi0mWxQHUrZKV6WRpZ3PSa5teK3nj1donZ5GTLMEtUFrNSzkLFqLUiEpVixYZRYfaDXa12ZVyLtq+f/CHnuMvCqi/pNWFW+dpmAVxFp/TJD1PCDmP0s6XoeEATF2XTiuBKIP37yEkIYFz21DfhNjEsZ8ifoww34S+4b6JvAz3y7kX5V6GexnOPoKz6x+AdgNHSHucbIiTIj77ifHjCDjBmQ5wUgviPVDrvWsYWL+p8982vOvGvpu4hhLf0G4ytV+Or/iRiNiDENGBVR8Pdxu9FS/7WInY/S2Gj8K5Rxl+CGUY3YHykeT2Rmk0MIq23J/73DLJPgnnndR+gsWYP+bsP8BgQv4Lg9NJn+mm3dkDvbKyXbgaudY267DMJR6gEOHBjBPMExHQDJvEHtAQaAQ8wi5NIbZtAsyeSQ4MUrBylIFLL1GKX9yd1xgi1GUHE39wgXGIGFCXlDhgKgKX2DDJhQwloggiXGStU2uWxcBj7LAUODpoU1pi0wbDddhH4yEwCsyupQmEMcQhJDYtUm6zZZxa31FpCDGB2C7FvIg50edDXJECs2gwwptaqz25K1k2+11xPKqq2ZiOu248Xxc9j6Y+ES/q/OrbE7Kl0KZ/RiG8jQ53nr+djq7Es2kp5rLEwuHSxgHAtSjtEXb6F3VloI+B1I8tW9GsVK4vpTG4SsMf4lpcCCO3r1Ba9w460+6mnspNXqpCieoXDBKrwiqE/cVtE1N/cbM48lbyum6Ly53GyIHtb7Kt0YEsHmfDH7xHd34qJNHRVIJTOhc25nl2vCjFTdjdMce9bXm9xya2UvdkLlt7oDr6bee1/rYuD0NNrSrznWjMpnVlGMJqLaoX1bKUjlyXWLGgya/m9fbSs8q8rne7BnvEOzBffleXdQt4JMMoQoGunfvWyVjP9lLEyRAnQfptUsV+nmahk3Dt3LdOCvfdu9YhpT1MSnozSrtEgsqHUeaCxpZHm0qZi75jVH7VIaVe/ofNeo7x1i07Vkn/IZXTyUmETa9kW8nSx1GFO7mpN9oH9j44z6YbLd8Ks3pRFT/JJR7Jt8JmRYOqvejB40Lmao0L/XhHnbDb+jO66kcLuWxlj7B0da8n1s2SYVTfGnaqXrX1+nV1/Q5j5sTV6aTHM9V5qxobmjDHNH0lD9FXKC0wyRfDdQheI4rcJhwk0lgS326qK6N3a0TaKo3BCK/sCErIKgCxMasaA+bNrlViDRfoGarGw42wM3gjFCZTDFl7qLdNK7V9j/AbB2gYk8/WZqgvt09hBqPt719GT+ErwJY9dQ7JUq6xXgbjon2xqZxr+61fuFrc7jHU8z8wRZ2ExmFHcPok+LHe7MIfRNmshK3XO3pLsZPtEeFO35u6ON6GhdrK4nTvDyfEYNa7wsIeIw/PoukOrHv4XhWFdDndh6OH+WGWlh1LS88SkkORpZF9yDq2kj1rdvw+zC0fwRy1CbhLLffl7sfFQksD21kwCjNMqNhS/vm5XXXcrvbceirvQ+HqQRT2+ZmS8BPD70Ah6wikn5/ApiOw8QRqVeHDfdhrHsWev7ki+gDy8KLy7MWfmb1Z8E5uDe0I/OLPTW2+3vrmAwRiuWSC44UfJ3Bwcd0+wuRfSX3aiNa8tVUNWKb5OMH3xcNPGHnmyZiFw3GOCeEv/0+pe1EWHlG2uz9l4f+eMstNdFRixo4zNk6Ph+9iLK/Xa1EVULn3tdeVrU4QaHB4VxDEXbyCuptFhPv6pN6Yfv6FV9spu0WsK1z3rL14GKs0TAe8ut6n3yU0cfRw9kHiw0ERpf3dM2YpJTGPE5omjJMsfTmiXVjSMeNZxpIwTOI4ZpSylyPOh0SfTR1yW4h7A9Fw9KRKG+7KZFhYufec7j+dz/8GUEsHCGg7mqarBgAAmRUAAFBLAQIUABQACAAIAJhWvULWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAmFa9Qmg7mqarBgAAmRUAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABCBwAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" useLocalJar="true"/> |
|} | |} | ||
</popup> | </popup> | ||
Zeile 115: | Zeile 106: | ||
− | <center><table border="0" width=" | + | <center><table border="0" width="850px" cellpadding=5 cellspacing=15> |
<tr><td width="800px" valign="top"> | <tr><td width="800px" valign="top"> | ||
Version vom 30. Juni 2013, 16:20 Uhr
Spiegle die Punkte A, B, C, D und E im Applet am Koordinatenursprung:
|
AllgemeinIst der Graph einer Funktion f punktsymmetrisch zum Ursprung,
|
Übung
Manipulationen an Funktionen |