Achtung:

Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.

Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.


Gerne kannst Du natürlich weiterarbeiten

im neuen Projektwiki (projekte.zum.de).

Erweitern und Kürzen: Unterschied zwischen den Versionen

Aus Projektwiki - ein Wiki mit Schülern für Schüler.
Wechseln zu: Navigation, Suche
Zeile 49: Zeile 49:
  
  
Hier gibt es nun eine Aufgabe für dich zum üben.  
+
Hier gibt es nun weitere Aufgaben für dich zum üben.  
  
 
<popup name= Aufgabe>
 
<popup name= Aufgabe>
 
<iframe src="https://learningapps.org/watch?v=phcoo720n18" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
 
<iframe src="https://learningapps.org/watch?v=phcoo720n18" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
 
</popup>
 
</popup>
 +
 +
 +
 +
<popup name= Aufgabe>
 +
<iframe src="https://learningapps.org/watch?v=pe5it5cw517" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
 +
</popup>
 +
  
  

Version vom 7. April 2018, 18:13 Uhr

  Was ist überhaupt ein Bruch?


Gemeiner Bruch.svg

Als Bruchrechnung bezeichnet man das Rechnen mit gemeinen Brüchen in der „Zähler-Bruchstrich-Nenner-Schreibweise“.

Die Regeln der Bruchrechnung beziehen sich auf die Grundrechenarten, also auf Addition, Subtraktion, Multiplikation, Division und Kehrwertbildung.

Außerdem gibt es eine Kürzungs- und Erweiterungsregel, zu der es weiter unten auch ein eigenes Thema gibt.


Nun zum ersten Thema des Lernpfades.

-> Erweitern und Kürzen:

Erweitern: Multipliziere Zähler und Nenner des Bruches mit derselben natürlichen Zahl, welche nicht 0 sein darf!

Kürzen: Dividiere Zähler und Nenner des Bruches durch dieselbe natürliche Zahl!


Beim Erweitern und Kürzen muss man Zähler und Nenner mit der gleichen Zahl multiplizieren bzw. dividieren.


Nun gibt es hier ein kleines Beispiel, mit dem du testen kannst, ob du die Grundregeln verstanden hast. Viel Spaß!

Zuordnungs-Quiz

Erweitern  \frac{2}{3}*\frac{5}{5}=\frac{10}{15}  \frac{1}{2}*\frac{4}{4}=\frac{4}{8}  \frac{2}{2}*\frac{2}{4}=\frac{4}{8}
Kürzen  \frac{6}{18}:\frac{3}{3}=\frac{2}{6}  \frac{2}{8}:\frac{2}{2}=\frac{1}{4}  \frac{36}{54}:\frac{9}{9}=\frac{4}{6}



Hier gibt es nun weitere Aufgaben für dich zum üben.






zur Berechnung von Grundwert, Prozentsatz und Prozentwert zu Brüche als Quotienten