Achtung:

Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.

Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.


Gerne kannst Du natürlich weiterarbeiten

im neuen Projektwiki (projekte.zum.de).

Dezimalbrüche: Unterschied zwischen den Versionen

Aus Projektwiki - ein Wiki mit Schülern für Schüler.
Wechseln zu: Navigation, Suche
Zeile 20: Zeile 20:
 
In Dezimalschreibweise:  '''0,2 = 0,20 = 0,200'''
 
In Dezimalschreibweise:  '''0,2 = 0,20 = 0,200'''
  
Wie zu erkennen ist kann man bei diesem Beispiel Arbeit ersparen und die <span style="color:#436EEE "><u>'''Nullen am Ende weglassen'''</u></span>, da sich die vorliegende Zahl dadurch <span style="color:#436EEE "><u>'''nicht verändert'''</u></span>.
+
Wie zu erkennen ist, kann man sich bei diesem Beispiel Arbeit ersparen und die <span style="color:#436EEE "><u>'''Nullen am Ende weglassen'''</u></span>, da sich die vorliegende Zahl dadurch <span style="color:#436EEE "><u>'''nicht verändert'''</u></span>.
  
 
Natürlich kommen nicht nur Zehnerbrüche in der Mathematik vor. Deshalb sollest du wissen wie man einen  
 
Natürlich kommen nicht nur Zehnerbrüche in der Mathematik vor. Deshalb sollest du wissen wie man einen  
 
<span style="color:#436EEE "><u>'''Bruch in einen Dezimalbruch'''</u></span> umwandelt.  
 
<span style="color:#436EEE "><u>'''Bruch in einen Dezimalbruch'''</u></span> umwandelt.  
  
Prüfe dazu, <span style="color:#436EEE "><u>'''ob'''</u></span> du den vorliegenden Bruch auf eine <span style="color:#436EEE "><u>'''Zehnerpotenz erweitern'''</u></span> oder <span style="color:#436EEE "><u>'''kürzen'''</u></span> kannst.
+
Prüfe dazu, <span style="color:#436EEE "><u>'''ob'''</u></span> du den vorliegenden Nenner auf eine <span style="color:#436EEE "><u>'''Zehnerpotenz erweitern'''</u></span> oder <span style="color:#436EEE "><u>'''kürzen'''</u></span> kannst.
  
 
Hier ein paar Beispiele:
 
Hier ein paar Beispiele:
Zeile 37: Zeile 37:
 
  <math>\frac{12}{16}</math> = <math>\frac{3}{4}</math> = <math>\frac{75}{100}</math> = '''0,75'''
 
  <math>\frac{12}{16}</math> = <math>\frac{3}{4}</math> = <math>\frac{75}{100}</math> = '''0,75'''
  
Der Bruch  '''<math>\frac{1}{3}</math>'''  kann beispielsweise <span style="color:#436EEE "><u>'''nicht'''</u></span> auf eine <span style="color:#436EEE "><u>'''Zehnerpotenz'''</u></span> erweitert werden und kann daher nur gerundet angegeben werden:
+
Der Bruch  '''<math>\frac{1}{3}</math>'''  kann beispielsweise <span style="color:#436EEE "><u>'''nicht'''</u></span> auf eine <span style="color:#436EEE "><u>'''Zehnerpotenz'''</u></span> erweitert werden und kann daher nur gerundet angegeben werden:  
  
 
  <math>\frac{1}{3}</math> = <math>\frac{3}{9}</math> '''&#x2248; 0,33'''
 
  <math>\frac{1}{3}</math> = <math>\frac{3}{9}</math> '''&#x2248; 0,33'''
Zeile 88: Zeile 88:
 
<br/>
 
<br/>
 
<br/>
 
<br/>
 
'''Hier geht's zum nächsten Kapitel!'''
 
  
 
{{Vorlage:Lesepfad Ende
 
{{Vorlage:Lesepfad Ende
|Link zurück=[[Julius-Echter-Gymnasium/Mathematik/Brüche_als_Quotienten|zu Brüche als Quotienten]]                   
+
|Link zurück=[[Julius-Echter-Gymnasium/Mathematik/Brüchen_als_Quotienten|zu Brüche als Quotienten]]                   
 
|Link vor=[[Julius-Echter-Gymnasium/Mathematik/Runden_von_Dezimalzahlen|zum Runden von Dezimalzahlen]]
 
|Link vor=[[Julius-Echter-Gymnasium/Mathematik/Runden_von_Dezimalzahlen|zum Runden von Dezimalzahlen]]
 
|Text Copyright=
 
|Text Copyright=
 
}}
 
}}

Version vom 10. September 2018, 15:35 Uhr


 

Im Nenner eines Dezimalbruchs steht immer eine natürliche Zahl der Zehnerpotenz.

Mit anderen Worten: Ein Bruch in dessen Nenner 10, 100, 1000, usw… steht, ist ein Dezimalbruch. Deshalb wird der Dezimalbruch auch häufig als Zehnerbruch bezeichnet!

Hier ein Beispiel eines Dezimalbruchs:

Bruch 2 10.PNG







In Dezimalschreibweise: 0,2 = 0,20 = 0,200

Wie zu erkennen ist, kann man sich bei diesem Beispiel Arbeit ersparen und die Nullen am Ende weglassen, da sich die vorliegende Zahl dadurch nicht verändert.

Natürlich kommen nicht nur Zehnerbrüche in der Mathematik vor. Deshalb sollest du wissen wie man einen Bruch in einen Dezimalbruch umwandelt.

Prüfe dazu, ob du den vorliegenden Nenner auf eine Zehnerpotenz erweitern oder kürzen kannst.

Hier ein paar Beispiele:

\frac{1}{5} = \frac{2}{10} = 0,2

\frac{1}{4} = \frac{25}{100} = 0,25

\frac{12}{16} = \frac{3}{4} = \frac{75}{100} = 0,75

Der Bruch \frac{1}{3} kann beispielsweise nicht auf eine Zehnerpotenz erweitert werden und kann daher nur gerundet angegeben werden:

\frac{1}{3} = \frac{3}{9} ≈ 0,33


Diese Dezimalbrüche solltest du dir sorgfältig einprägen, da sie häufig in Aufgaben verwendet werden!

\frac{1}{2} = 0,5

\frac{1}{4} = 0,25

\frac{1}{8} = 0,125

\frac{1}{10} = 0,1

\frac{1}{16} = 0,0625

Übe nun den Umgang mit Dezimalbrüchen in den folgenden Aufgaben. Viel Spaß!




zu Brüche als Quotienten zum Runden von Dezimalzahlen