Achtung:

Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.

Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.


Gerne kannst Du natürlich weiterarbeiten

im neuen Projektwiki (projekte.zum.de).

Punktsymmetrie zum Ursprung

Aus Projektwiki - ein Wiki mit Schülern für Schüler.
< Manipulationen an Funktionen‎ | Symmetrie von Funktionsgraphen
Version vom 31. August 2013, 15:58 Uhr von Myriam Lang (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche


Spiegle die Punkte A, B, C, D und E im Applet am Koordinatenursprung:

Achte dabei auf die Kooordinaten der Spiegelpunkte.
Was fällt dir auf?
Welchen Zusammenhang kannst du zwischen den Koordinaten der eigentlichen Punkte und denen der Spiegelpunkte feststellen?

Verbinde die Punkte zu einem Funktionsgraphen.
Um welche Funktion handelt es sich hier?



Zeichne den so entstandenen Funktionsgraphen auf deinem Arbeitsblatt ein und fülle die Lücken dort aus, nachdem du die Antworten mit dem folgenden Lückentext kontrolliert hast.


Allgemein

Wie lässt sich diese Feststellung verallgemeinern?
Setze die richtigen Lücken ein und übertrage sie anschließend auf dein Arbeitsblatt.

Ist der Graph einer Funktion f punktsymmetrisch zum Ursprung,
so besitzen gleich weit vom Ursprung entfernte x- Werte immer den betragsgleichen Funktionswert mit unterschiedlichem Vorzeichen.
Es gilt also: f (x) = - f (-x)

Man kann aber auch vom Funktionsterm auf den Graphen schließen:
Gilt für eine Funktion f mit der Definitionsmenge Df für alle x ∈ Df
f (x) = - f (-x),
dann verläuft der Graph von f punktsymmetrisch zum Ursprung.



Welche weiteren Funktionen kennst du, deren Graph punktsymmetrisch zum Ursprung verläuft?
Überlege dir, wie der Graph einer solchen Funktion aussehen muss und worauf es im Funktionsterm ankommt.

Im GeoGebra-Applet kannst du wieder die Parameter a, b, c, d, e und damit den Funktionsterm und Graphen von f verändern.
Stelle sie so ein, dass f punktsymmetrisch zum Ursprung verläuft.



Kannst du die Lücken der Definition auf deinem Arbeitsblatt schon ausfüllen?
Kontrolliere dich mit der folgenden Lösung:



Auch das lässt sich rechnerisch erklären:
Beweis:
Die Beziehung f (x) = - f (-x), bzw. f (-x) = - f (x) muss für alle x- Werte gelten, für die die Funktion definiert ist.
Setzt man negative x- Werte in die Funktionsgleichung ein, muss das den gleichen Funktionswert, aber mit verkehrtem Vorzeichen ergeben.
Nur wenn jeder Exponent ungerade ist, dreht sich jedes Vorzeichen vor einem x um:
Z. B.: f (x) = -x5 + x3
f (-x)
= - (-x)5 + (-x)3
= +x5 - x3
= - ( -x5 + x3)
= - f (x)


Bereits ein gerader Exponent sorgt schon für ein falsches Vorzeichen.
In diesem Fall läge keine Punktsymmetrie zum Ursprung vor.


Übung


Ist die Funktion achsensymmetrisch, punktsymmetrisch oder weder/noch?
Wähle eine Rubrik aus und klicke auf alle zugehörigen Funktionen, bis das Puzzle vollständig aufgedeckt ist.

Warum wurde gerade dieses Bild als Hintergrund gewählt?




Zurück zur Achsensymmetrie zur y- Achse Weiter zu den Grenzwerten im Unendlichen

Manipulationen an Funktionen