Division von Brüchen

Aus Projektwiki - ein Wiki mit Schülern für Schüler.
Wechseln zu: Navigation, Suche

 

Division von Brüchen:

Divide20by4.svg


Bei der Division von Brüchen spielt der Kehrwert eine große Rolle.

Die wichtigste Regel lautet:
Um einen Bruch durch einen anderen zu dividieren, musst du diesen Bruch mit dem Kehrwert des anderen Bruchs multiplizieren.

Kehrwert bedeutet, dass der Bruch umgedreht wird, also dass Zähler und Nenner vertauscht werden. Nach der Umwandlung ändert sich auch das Rechenzeichen, und das "÷" wird zu einem "·". Nun werden die 2 Brüche miteinander multipliziert und tadaaa, du hast die Lösung. Am Ende kannst du nochmal überprüfen, ob du das Ergebnis kürzen kannst.
So schwer war das doch gar nicht, oder?:)

Aber falls du es noch nicht ganz verstanden hast, habe ich hier ein Beispiel für dich:

  \frac{2}{4}   :   \frac{5}{2}   =   \frac{2}{4}  ·  \frac{2}{5}   =   \frac{4}{20}   =   \frac{1}{5}  





Bei den folgenden Aufgaben kannst du sowohl die Multiplikation als auch die Division von Brüchen üben:




Zum vorherigen Thema: Multiplikation von Brüchen Zum nächsten Thema: Flächeninhalt von Parallelogrammen