Achtung:

Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.

Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.


Gerne kannst Du natürlich weiterarbeiten

im neuen Projektwiki (projekte.zum.de).

Strecken und Spiegeln von Parabeln

Aus Projektwiki - ein Wiki mit Schülern für Schüler.
< Manipulationen an Funktionen‎ | Strecken und Spiegeln von Funktionsgraphen
Version vom 25. Juni 2013, 21:44 Uhr von Myriam Lang (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche


Im Applet lassen sich Term und Graph der Funktion g(x) = a ∙ x2 über den Schieberegler a verändern.

Was bewirkt ein positiver Parameter a, was ein negativer?
Gibt es "Spezialfälle"?



Übung

Wenn a positiv ist, ... (!ist die Parabel nach unten geöffnet) (!wird die Parabel nach oben verschoben) (ist die Parabel nach oben geöffnet) (!wird die Parabel an der x- Achse gespiegelt)

Für a > 1 ... (ist die Parabel achsensymmetrisch zur y- Achse) (wird die Parabel in x- Richtung gestreckt) (!ist die Parabel nach unten geöffnet) (!werden alle Funktionswerte negativ) (!wird der Graph der Funktion nach oben verschoben)

Wenn a negativ ist, ... (!ist die Parabel punktsymmetrisch zum Ursprung)(!wird die Parabel in x- Richtung gestreckt) (ist die Parabel nach unten geöffnet) (!werden alle Funktionswerte positiv) (!wird der Graph der Funktion nach rechts verschoben)

Für -1 < a < +1 ... (ist die Parabel breiter als die Normalparabel) (!verläuft die Parabel schmaler als die Normalparabel) (!ist die Funktion achsensymmetrisch zur x- Achse) (kann die Parabel zu einer Geraden werden) (!hat die Funktion nur negative Funktionswerte) (!hat die Funktion nur positive Funktionswerte)




Zurück zum Strecken und Spiegeln von Funktionsgraphen Weiter zu den Trigonometrischen Funktionen

Manipulationen an Funktionen