Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.
Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.
Gerne kannst Du natürlich weiterarbeiten
im neuen Projektwiki (projekte.zum.de).Zufallsexperimente: Unterschied zwischen den Versionen
Zeile 15: | Zeile 15: | ||
<u>Beispiel:</u> | <u>Beispiel:</u> | ||
− | Fast jeder wird im Alltag regelmäßig Ausführer eines | + | Fast jeder wird im Alltag regelmäßig Ausführer eines Zufallsexperiments. Ein gutes Beispiel sieht man beim Spielen von "Mensch ärger dich nicht". Wenn der Spieler an der Reihe ist, würfelt er, um mit seiner Figur vorrücken zu können. Dieses Würfeln ist ein Zufallsexperiment. Wie wir in der Definition gelernt haben, ist eim Merkmal von Zufallsexperimenten die Unbekanntheit der Ergebnisse. Dies trifft auch beim Würfeln zu, da der Spieler nicht wissen kann, welche Zahl er würfeln wird. Obwohl das Würfelergebnis noch unbekannt ist, besteht das Merkmal eines Zufallsexperiments darin, dass alle möglichen Ergebnisse bekannt sind. So auch beim Würfeln: Da die Spieler wissen, dass ein Würfel 6 Seiten hat, wissen sie auch, dass das Ergebnis nur zwischen 1 und 6 liegen kann. Die möglichen Ergebnisse sind also 1,2,3,4,5 oder 6. |
<div style="padding:110px;background:#FFFFFF;border:0px groove;"> | <div style="padding:110px;background:#FFFFFF;border:0px groove;"> |
Version vom 20. Januar 2018, 13:46 Uhr
Zufallsexperimente
Definition:
Wenn der Ausgang eines Experiments nicht vorhergesagt werden kann, aber alle möglichen Ergebnisse bekannt sind, nennt man es ein Zufallsexperiment.
Beispiel:
Fast jeder wird im Alltag regelmäßig Ausführer eines Zufallsexperiments. Ein gutes Beispiel sieht man beim Spielen von "Mensch ärger dich nicht". Wenn der Spieler an der Reihe ist, würfelt er, um mit seiner Figur vorrücken zu können. Dieses Würfeln ist ein Zufallsexperiment. Wie wir in der Definition gelernt haben, ist eim Merkmal von Zufallsexperimenten die Unbekanntheit der Ergebnisse. Dies trifft auch beim Würfeln zu, da der Spieler nicht wissen kann, welche Zahl er würfeln wird. Obwohl das Würfelergebnis noch unbekannt ist, besteht das Merkmal eines Zufallsexperiments darin, dass alle möglichen Ergebnisse bekannt sind. So auch beim Würfeln: Da die Spieler wissen, dass ein Würfel 6 Seiten hat, wissen sie auch, dass das Ergebnis nur zwischen 1 und 6 liegen kann. Die möglichen Ergebnisse sind also 1,2,3,4,5 oder 6.
Hier kannst du testen, ob du Zufallsexperimente erkennen kannst:
Auswerten von Zufallsexperimenten
Zum Auswerten von Zufallsexperimenten betrachtet man absolute und relative Häufigkeit.
Beispiel:
Es wurde insgesamt 100 mal gewürfelt.
100 = Anzahl der Durchführungen
Augenzahl
|
|
|
|
|
|
|
gewürfelte Anzahl = absolute Häufigkeit
|
|
|
|
|
|
|
relative Häufigkeit
|
=13% |
=20% |
=14% |
=21% |
=14% |
=18% |
zum Vergleichen von Dezimalbrüchen | Zum nächsten Thema: Addition und Subtraktion gleichnamiger Brüche |