Achtung:

Dieses Wiki, das alte(!) Projektwiki (projektwiki.zum.de)
wird demnächst gelöscht.

Bitte sichere Deine Inhalte zeitnah,
wenn Du sie weiter verwenden möchtest.


Gerne kannst Du natürlich weiterarbeiten

im neuen Projektwiki (projekte.zum.de).

Von der mittleren zur lokalen Änderungsrate: Unterschied zwischen den Versionen

Aus Projektwiki - ein Wiki mit Schülern für Schüler.
Wechseln zu: Navigation, Suche
Zeile 116: Zeile 116:
 
==Unterscheidung der Änderungsraten==
 
==Unterscheidung der Änderungsraten==
  
{{Aufgaben|3:|
+
{{Aufgaben|2: Unterscheidung der mittleren und lokalen Änderungsrate|
'''a) Unterscheidung der mittleren und lokalen Änderungsrate'''
+
'''a)''' Ordne die Karten jeweils richtig zu, indem ihr sie entweder zur durchsnittlichen oder lokalen Änderungsrate zieht.
 +
<iframe src="https://learningapps.org/watch?v=pave4br9c18" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
  
Ordne die verschiedenen Begriffe der richtigen Änderungsrate zu.
+
<popup name="Tipp: Durschnittliche Änderungsrate">Die Formel <math>\frac{f(x_1)-f(x_0)} {x_1-x_0}</math> stellt den Differenzenquotienten dar. Der Differenzenquotient gibt die durchschnittliche Änderungsrate von f über dem Intervall [<math>x_1</math>;<math>x_2</math>] an.
<iframe src="https://learningapps.org/watch?app=764461" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
+
 
+
<popup name="Tipp: Differenzenquotient">Die Formel <math>\frac{f(x_2)-f(x_1)} {x_2-x_1}</math> stellt den Differenzenquotienten dar. Der Differenzenquotient gibt die durchschnittliche Änderungsrate von f über dem Intervall [<math>x_1</math>;<math>x_2</math>] an.
+
 
Geometrisch gedeutet ist dieser Quotient die Steigung der Sekanten durch die zwei Punkte P(<math>x_0</math>|<math>f(x_0)</math>) und Q(<math>x_1</math>|<math>f(x_1)</math>).
 
Geometrisch gedeutet ist dieser Quotient die Steigung der Sekanten durch die zwei Punkte P(<math>x_0</math>|<math>f(x_0)</math>) und Q(<math>x_1</math>|<math>f(x_1)</math>).
 
[[File:Afgeleide.svg|Geometrische Betrachtung des Differenzenquotienten|300px]]</popup>
 
[[File:Afgeleide.svg|Geometrische Betrachtung des Differenzenquotienten|300px]]</popup>
  
<popup name="Tipp: Differenzialquotient">Die Formel <math> \lim_{h \to 0} \frac{f(x+h)-f(x)} {h}</math> heißt Differentialquotient. Dieser Quotient ist der Grenzwert des Differenzenquotienten. Er gibt die Steigung der Tangente an der Stelle x an und entspricht der Ableitung an dieser Stelle.</popup>
+
<popup name="Tipp: Lokale Änderungsrate">Die Formel <math>\frac{f(x+h)-f(x)} {h}</math> heißt Differenzialquotient. Dieser Quotient ist der Grenzwert des Differenzenquotienten. Er gibt die Steigung der Tangente an der Stelle x an und entspricht der Ableitung an dieser Stelle.</popup>
  
  
'''b) Vertiefen der Ergebnisse aus 3a)'''
+
'''b)''' Fertige in deinem Heft eine Tabelle zur durchschnittlichen und momentanen Änderungsrate mit den Karten aus Teilaufgabe a an. Stelle die zueinander passenden Begriffe und Formeln gegenüber, zum Beispiel Sekante und Tangente.
 
+
Fertige in deinem Heft eine Tabelle zur durchschnittlichen und momentanen Änderungsrate mit den Begriffen aus Teilaufgabe a an. Stelle die zueinander passenden Begriffe gegenüber.
+
 
<popup name="Lösung"
 
<popup name="Lösung"
 
>{| class="wikitable"
 
>{| class="wikitable"
Zeile 139: Zeile 135:
 
| Sekante || Tangente
 
| Sekante || Tangente
 
|-
 
|-
| <math>\frac{f(x_2)-f(x_1)} {x_2-x_1}</math> || <math> \lim_{h \to 0} \frac{f(x+h)-f(x)} {h}</math>
+
| Differenzenquotient || Differenzialquotient
 
|-
 
|-
 
| die Steigung zwischen zwei Punkten || die Steigung im Punkt P
 
| die Steigung zwischen zwei Punkten || die Steigung im Punkt P
Zeile 146: Zeile 142:
 
|-
 
|-
 
| die Durchschnittsgeschwindigkeit || die Momentangeschwindigkeit
 
| die Durchschnittsgeschwindigkeit || die Momentangeschwindigkeit
</popup>}}
+
</popup>
 +
}}
  
{{Aufgaben|4: Änderungsraten im Sachzusammenhang|
+
{{Aufgaben|3: Änderungsraten im Sachzusammenhang|
  
 +
Tim fährt mit dem Fahrrad zur Schule und muss an einer roten Ampel abbremsen. Für den in der Zeit t (in Sekunden) zurückgelegten Weg s(t) (in Metern) gilt:
  
Tim fährt mit dem Fahrrad zur Schule und muss an einer roten Ampel abbremsen. Für den in der Zeit t (in Sekunden) zurückgelegten Weg s(t) (in Meter) gilt:
+
''<math>s(t)=10t-t^2</math>''    für  <math>t\in [0;5]</math>
 
+
        ''<math>s(t)=10t-t^2</math>''    für  <math>t\in [0;5]</math>
+
  
 
'''a)''' Berechne den zurückgelegten Weg nach 3 und 5 Sekunden.
 
'''a)''' Berechne den zurückgelegten Weg nach 3 und 5 Sekunden.
 +
 +
<popup name="Tipp 1">Gesucht wird die momentane Geschwindigkeit.</popup>
 +
 +
<popup name="Tipp 2">Zur Berechnung der momentanen Geschwindigkeit musst du die Ableitung der Funktion bilden.</popup>
  
 
'''b)''' Berechne die Geschwindigkeit, die Tim nach 3 Sekunden bzw. nach 5 Sekunden mit seinem Fahrrad erreicht hat.
 
'''b)''' Berechne die Geschwindigkeit, die Tim nach 3 Sekunden bzw. nach 5 Sekunden mit seinem Fahrrad erreicht hat.
Zeile 161: Zeile 161:
 
'''c)''' Warum hat die oben genannte Formel im vorliegenden Sachzusammenhang für <math>t=6</math> keinen Sinn?  
 
'''c)''' Warum hat die oben genannte Formel im vorliegenden Sachzusammenhang für <math>t=6</math> keinen Sinn?  
  
 
<popup name="Tipp zu (ii)">Gesucht wird die momentane Geschwindigkeit. Zur Berechnung bilde die Ableitung der Funktion.</popup>
 
  
 
<iframe src="https://learningapps.org/watch?v=pg7j9c1ek18" style="border:0px;width:100%;height:300px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
 
<iframe src="https://learningapps.org/watch?v=pg7j9c1ek18" style="border:0px;width:100%;height:300px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
  
<popup name="Lösung (i)">Nach 3 Sekunden hat Tim einen Weg von 21 Metern zurückgelegt und nach 5 Sekunden 25 Meter.</popup>
+
<popup name="Lösung a)">Nach 3 Sekunden hat Tim einen Weg von 21 Metern zurückgelegt, denn <math>s(3)=10*3-3^2=30-9=21</math>. Nach 5 Sekunden hat er 25 Meter zurückgelegt, denn es gilt <math>s(5)=10*5-5^2=50-25=25</math>.</popup>
  
<popup name="Lösung (ii)">Die momentane Änderungsrate s'(t) entspricht der Geschwindigkeit. s'(3)=4 und s'(5)=0.</popup>
+
<popup name="Lösung b)">Die momentane Änderungsrate <math>s'(t)=10-2t</math> entspricht der Geschwindigkeit. <math>s'(3)=10-2*3=10-6=4</math> und <math>s'(5)=10-2*5=10-10=0</math>.</popup>
  
<popup name="Lösung (iii)">Die angegebene Formel kann nicht für t=6 gelten, da Tim nach 5 Sekunden schon stehen geblieben ist.</popup>
+
<popup name="Lösung c)">Die angegebene Formel kann nicht für t=6 gelten, da die gegebene Funktion nur für den Definitionsbereich <math>t\in [0;5]</math> gilt. In der Realität bedeutet es, dass Tim nach 5 Sekunden schon stehen geblieben ist.</popup>
 
}}
 
}}
 +
  
 
==Zusammenhang von durchschnittlicher und momentaner Änderungsrate==
 
==Zusammenhang von durchschnittlicher und momentaner Änderungsrate==

Version vom 16. November 2018, 13:16 Uhr


Dieser Lernpfad beschäftigt sich mit der mittleren und lokalen Änderungsrate.

In Aufgabe 1 geht es darum, die mittlere Änderungsrate zu berechnen. Dies erfolgt in Teilaufgabe a) anhand von Rechenbeispielen. In b) hingegen übst du mittlere Änderungsraten im Sachzusammenhang zu berechnen. Dies ist eine Förderaufgabe. Wenn du schon sicher im Umgang mit mittleren Änderungsraten bist, kannst du diese Aufgabe auch überspringen.

In Aufgabe 2 beschäftigst du dich mit der Unterscheidung der mittleren und lokale Änderungsrate. In Teilaufgaben a) und b) geht es darum, festzustellen, wie sich die beiden Änderungsraten unterscheiden. In Teilaufgabe c) musst du im Sachzusammenhang unterscheiden, welche der beiden Änderungsraten berechnet werden soll. Diese Aufgabe ist eine Förderaufgabe.

Den Zusammenhang von mittlerer und lokaler Änderungsrate erarbeitest du in Aufgabe 3. Teilaufgabe a) ist eine Förderaufgabe. In Teilaufgabe b) geht es um die graphischen Zusammenhänge. Dies ist eine Forderaufgabe.


Inhaltsverzeichnis


Bestimmung von mittleren Änderungsraten

Stift.gif   Aufgabe 1: Berechnung der mittleren Änderungsrate


Berechne die mittlere Änderungsrate in den angegebenen Intervallen zunächst auf einem separaten Blatt Papier. Prüfe im Anschluss die von dir errechneten Werte, indem du sie in die dafür vorgesehenen Kästchen unter der Aufgabe eingibst.


1. f(x)=4x+2 im Intervall [2,5]

2. g(x)=x^2 im Intervall [2,7]

3. h(x)=x^3-2 im Intervall [-2,1]


Stift.gif   Aufgabe 2: Berechnung der mittleren Änderungsrate im Sachkontext


Dein Sportverein feiert dieses Jahr seinen 25. Geburtstag. Zu diesem Anlass wird eine Tabelle mit den Mitgliederzahlen der letzten Jahre veröffentlicht (leider gab es vor dem Jahr 2010 keine Statistik über die Anzahl der Mitglieder):

Diwerspng.PNG




Leider ist der Vorstand wegen der Vorbereitung der Jubiläumsfeier sehr beschäftigt und bittet dich, ihm bei der Beantwortung einiger Fragen zu helfen.

a) Wie viele Mitglieder sind seit 2010 im Durchschnitt pro Jahr in deinem Verein hinzugekommen?

(!30) (!2,4) (!24) (!29,71) (26)

b) Der aktuelle Vorstand arbeitet seit 2016 zusammen. Sein Ziel war eine Steigerung der Mitgliedszahlen. Diese sollte im Mittel größer sein als der durchschnittliche Mitgliederzuwachs in den Jahren davor (also von Beginn der Mitgliedererfassung bis zur Wahl des neuen Vorstands 2016). Ist es Ihnen gelungen ihr Ziel zu erreichen?

(Ja, es ist Ihnen gelungen ihr Ziel zu erreichen.) (!Nein, sie haben ihr Ziel nicht erreicht.) (!Sowohl vor der Wahl als auch nach der Wahl des neuen Vorstands sind im Durchschnitt pro Jahr genau gleich viele Mitglieder dem Verein beigetreten.)


Unterscheidung der Änderungsraten

Stift.gif   Aufgabe 2: Unterscheidung der mittleren und lokalen Änderungsrate

a) Ordne die Karten jeweils richtig zu, indem ihr sie entweder zur durchsnittlichen oder lokalen Änderungsrate zieht.


b) Fertige in deinem Heft eine Tabelle zur durchschnittlichen und momentanen Änderungsrate mit den Karten aus Teilaufgabe a an. Stelle die zueinander passenden Begriffe und Formeln gegenüber, zum Beispiel Sekante und Tangente.

Stift.gif   Aufgabe 3: Änderungsraten im Sachzusammenhang


Tim fährt mit dem Fahrrad zur Schule und muss an einer roten Ampel abbremsen. Für den in der Zeit t (in Sekunden) zurückgelegten Weg s(t) (in Metern) gilt:

s(t)=10t-t^2 für t\in [0;5]

a) Berechne den zurückgelegten Weg nach 3 und 5 Sekunden.

b) Berechne die Geschwindigkeit, die Tim nach 3 Sekunden bzw. nach 5 Sekunden mit seinem Fahrrad erreicht hat.

c) Warum hat die oben genannte Formel im vorliegenden Sachzusammenhang für t=6 keinen Sinn?



Zusammenhang von durchschnittlicher und momentaner Änderungsrate

Stift.gif   Aufgabe 5: Zusammenhang von mittleren und lokalen Änderungsrate
f(x) = -1/2*(x-1)^2+3 

Diese Funktion ist in der folgenden Abbildung dargestellt:

In der folgenden Tabelle siehst du einige Funktionswerte aufgelistet, die du auch in der obigen Graphik ablesen kannst. Außerdem wurden die Differenzenquotienten vom Punkt P = (2|2,5) mit Punkten in der Umgebung ausgerechnet.

Tabelle zu x-, y-Werten und dem Differenzenquotienten zu der gegebenen Funktion f









a) Beschreibe, was mit dem Differenzenquotient passiert, wenn sich die x-Werte 2 annähern.

b) Erkläre, warum in der letzten Zeile unter "Differenzenquotient" ein "?" eingetragen ist.

c) Was bedeutet das Ergebnis aus 1) für die durchschnittliche Änderungsrate und was bedeutet es für die momentane Änderungsrate im Punkt (2 ; 2,5)? Wie hängen diese beiden Begriffe miteinander zusammen? Beantworte diese Fragen selbst oder löse dazu den Lückentext. Dabei beziehen sich die Lücken immer auf \frac {f(2)-f(x)} {2-x}.

Stift.gif   Aufgabe 6: graphischer Zusammenhang von mittleren und lokalen Änderungsrate

(Forder-Aufgabe)

Sieh dir zunächst die Formeln und die Abbildung in der Darstellung an. Durch Verschieben des Δx-Knopfs verändern sich die Werte in den Formeln und die Abbildung. Probier einmal aus, was sich verändert.

a) Was gibt die Variable ks an?

b) Fülle nun den folgenden Lückentext aus.